975 resultados para Small-angle x-ray scattering


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growth mechanism and kinetics of mesoporous silica nanoparticles (MSNs) were investigated for the first time by using a synchrotron time-resolved small-angle X-ray scattering (SAXS) analysis. The synchrotron SAXS offers unsurpassed time resolution and the ability to detect structural changes of nanometer sized objects, which are beneficial for the understanding of the growth mechanism of small MSNs (∼20 nm). The Porod invariant was used to quantify the conversion of tetraethyl orthosilicate (TEOS) in silica during MSN formation, and the growth kinetics were investigated at different solution pH and temperature through calculating the scattering invariant as a function of reaction time. The growth of MSNs was found to be accelerated at high temperature and high pH, resulting in a higher rate of silica formation. Modeling SAXS data of micelles, where a well-defined electrostatic interaction is assumed, determines the size and shape of hexadecyltrimethylammonium bromide (CTAB) micelles before and after the addition of TEOS. The results suggested that the micelle size increases and the micelle shape changes from ellipsoid to spherical, which might be attributed to the solubilization of TEOS in the hydrophobic core of CTAB micelles. A new "swelling-shrinking" mechanism is proposed. The mechanism provides new insights into understanding MSN growth for the formation of functional mesoporous materials exhibiting controlled morphologies. The SAXS analyses were correlated to the structure of CTAB micelles and chemical reaction of TEOS. This study has provided critical information to an understanding of the growth kinetics and mechanism of MSNs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Small-angle X-ray scattering (SAXS) and electron paramagnetic resonance (EPR) have been carried out to investigate the structure of the self-aggregates of two phenothiazine drugs, chlorpromazine (CPZ) and trifluoperazine (TFP), in aqueous solution. In the SAXS studies, drug solutions of 20 and 60 mM, at pH 4.0 and 7.0, were investigated and the best data fittings were achieved assuming several different particle form factors with a homogeneous electron density distribution in respect to the water environment. Because of the limitation of scattering intensity in the q range above 0.15 angstrom(-1), precise determination of the aggregate shape was not possible and all of the tested models for ellipsoids, cylinders, or parallelepipeds fitted the experimental data equally well. The SAXS data allows inferring, however, that CPZ molecules might self-assemble in a basis set of an orthorhombic cell, remaining as nanocrystallites in solution. Such nanocrystals are composed of a small number of unit cells (up to 10, in c-direction), with CPZ aggregation numbers of 60-80. EPR spectra of 5- and 16-doxyl stearic acids bound to the aggregates were analyzed through simulation, and the dynamic and magnetic parameters were obtained. The phenothiazine concentration in EPR experiments was in the range of 5-60 mM. Critical aggregation concentration of TFP is lower than that for CPZ, consistent with a higher hydrophobicity of TFP. At acidic pH 4.0 a significant residual motion of the nitroxide relative to the aggregate is observed, and the EPR spectra and corresponding parameters are similar to those reported for aqueous surfactant micelles. However, at pH 6.5 a significant motional restriction is observed, and the nitroxide rotational correlation times correlate very well with those estimated for the whole aggregated particle from SAXS data. This implies that the aggregate is densely packed at this pH and that the nitroxide is tightly bound to it producing a strongly immobilized EPR spectrum. Besides that, at pH 6.5 the differences in motional restriction observed between 5- and 16-DSA are small, which is different from that observed for aqueous surfactant micelles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Docking simulations have been used to assess protein complexes with some success. Small angle X-ray scattering (SAXS) is a well-established technique to investigate protein spatial configuration. This work describes the integration of geometric docking with SAXS to investigate the quaternary structure of recombinant human purine nucleoside phosphorylase (PNP). This enzyme catalyzes the reversible phosphorolysis of N-ribosidic bonds of purine nucleosides and deoxynucleosides. A genetic deficiency due to mutations in the gene encoding for PNP causes gradual decrease in T-cell immunity. Inappropriate activation of T-cells has been implicated in several clinically relevant human conditions such as transplant rejection, rheumatoid arthritis, lupus, and T-cell lymphomas. PNP is therefore a target for inhibitor development aiming at T-cell immune response modulation and has been submitted to extensive structure-based drug design. The present analysis confirms the trimeric structure observed in the crystal. The potential application of the present procedure to other systems is discussed. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silica sonogels with different porosities were prepared by acid sono-hydrolysis of tetraethoxysilane. Wet sonogels were studied using small-angle x-ray scattering (SAXS) and differential scanning calorimetry (DSC). The DSC shows a broad thermal peak below the normal water melting point associated with the melting of confined ice nanocrystals, or nanoporosity. The nanopore size distribution was determined from the Gibbs-Thomson equation. As the porosity is increased, a second sharp DSC thermal peak with onset temperature at the water melting point is apparent, which was associated with the melting of ice macrocrystals, or macroporosity. The DSC result could be causing misinterpretation of the macroporosity because water may not be exactly confined in very feeble silica network regions in sonogels with high porosity. The structure of the wet gels can be described fairly well as mutually self-similar mass fractal structures with characteristic length. increasing from similar to 1.8 to similar to 5.4 nm and mass fractal dimension D diminishing discretely from similar to 2.6 to similar to 2.3 as the porosity increases in the range studied. More specifically, such a structure could be described using a two-parameter correlation function gamma(r) similar to r(D-3) exp(-r/xi), which is limited at larger scale by the cut-off distance xi but without a well-defined small scale cut-off distance, at least up to the maximum angular domain probed using SAXS in the present study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A sample series of silica sonogels was prepared using different water-tetraethoxysilane molar ratio (r(w)) in the gelation step of the process in order to obtain aerogels with different bulk densities after the supercritical drying. The samples were analyzed by means of small-angle x-ray-scattering (SAXS) and nitrogen-adsorption techniques. Wet sonogels exhibit mass fractal structure with fractal dimension D increasing from similar to2.1 to similar to2.4 and mass-fractal correlation length xi diminishing from similar to13 nm to similar to2 nm, as r(w) is changed in the nominal range from 66 to 6. The process of obtaining aerogels from sonogels and heat treatment at 500degreesC, in general, increases the mass-fractal dimension D, diminishes the characteristic length xi of the fractal structure, and shortens the fractal range at the micropore side for the formation of a secondary structured particle, apparently evolved from the original wet structure at a high resolution level. The overall mass-fractal dimension D of aerogels was evaluated as similar to2.4 and similar to2.5, as determined from SAXS and from pore-size distribution by nitrogen adsorption, respectively. The fine structure of the secondary particle developed in the obtaining of aerogels could be described as a surface-mass fractal, with the correlated surface and mass-fractal dimensions decreasing from similar to2.4 to similar to2.0 and from similar to2.7 to similar to2.5, respectively, as the aerogel bulk density increases from 0.25 (r(w)=66) up to 0.91 g/cm(3) (r(w)=6).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Small-angle X-ray scattering (SAXS) and nitrogen adsorption techniques were used to study the temperature and time structural evolution of the nanoporosity in silica xerogels prepared from acid- and ultrasound-catalyzed hydrolysis of tetraetboxysilane (TEOS). Silica xerogels present a structure of nanopores of fully random shape, size, and distribution, which can be described by an exponential correlation function gamma(r) = exp (-r/a), where a is the correlation distance, as predicted by the Debye, Anderson, and Brumberger (DAB) model. The mean pore size was evaluated as about 1.25 nm from SAXS and about 1.9 nm from nitrogen adsorption. The nanopore elimination in TEOS sonohydrolysis-derived silica xerogels is readily accelerated at temperatures around 900 degrees C probably by the action of a viscous flow mechanism. The nanopore elimination process takes place in such a way that the pore volume fraction and the specific surface are reduced while the mean pore size remains constant. (c) 2005 WILEY-VCH Verlag GmbH S Co. KGaA, Weinheim.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hybrid organic-inorganic two-phase nanocomposites of siloxane-poly(ethylene glycol) (SiO3/2-PEG) and siloxane-poly(propylene glycol) (SiO3/2-PPG) have been obtained by the sol-gel process. In these composites, nanometric siloxane heterogeneities are embedded in a polymeric matrix with covalent bonds in the interfaces. The structure of these materials was investigated in samples with different molecular weights of the polymer using the smalt-angle X-ray scattering (SAXS) technique. The SAXS spectra exhibit a well-defined peak that was attributed to the existence of a strong spatial correlation of siloxane clusters. LiClO4-doped siloxane-PEG and siloxane-PPG hybrids, which exhibit good ionic conduction properties, have also been studied as a function of the lithium concentration [O]/[Li], O being the oxygens of ether type. SAXS results allowed us to establish a structural model for these materials for different basic compositions and a varying [Li] content. The conclusion is consistent with that deduced from ionic conductivity measurements that exhibit a maximum for [O]/[Li] =15.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low density silica sonogels were prepared from acid sonohydrolysis of tetraethoxysilane. Wet gels were studied by small-angle x-ray scattering (SAXS) and differential scanning calorimetry (DSC). The DSC tests were carried out under a heating rate of 2 degrees C/min from -120 degrees C up to 30 degrees C. Aerogels were obtained by CO(2) supercritical extraction and characterized by nitrogen adsorption and SAXS. The DSC thermogram displays two distinct endothermic peaks. The first, a broad peak extending from about -80 degrees C up to practically 0 degrees C, was associated to the melting of ice nanocrystals with a crystal size distribution with pore diameter ranging from 1 or 2 nm up to about 60 nm, as estimated from Thomson's equation. The second, a sharp peak with onset temperature close to 0 degrees C, was attributed to the melting of macroscopic crystals. The DSC incremental nanopore volume distribution is in reasonable agreement with the incremental pore volume distribution of the aerogel as determined from nitrogen adsorption. No macroporosity was detected by nitrogen adsorption, probably because the adsorption method applies stress on the sample during measurement, leading to a underestimation of pore volume, or because often positive curvature of the solid surface is in aerogels, making the nitrogen condensation more difficult. According to the SAXS results, the solid network of the wet gels behaves as a mass fractal structure with mass fractal dimension D=2.20 +/- 0.01 in a characteristic length scale below xi=7.9 +/- 0.1 nm. The mass fractal characteristics of the wet gels have also been probed from DSC data by means of an earlier applied modeling for generation of a mass fractal from the incremental pore volume distribution curves. The results are shown to be in interesting agreement with the results from SAXS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Considerable interest is currently focused on fish haemoglobins in order to identify the structural basis for their diversity of functional behavior. Hoplosternum littorale is a catfish that presents bimodal gill (water)/gut (air) -breathing, which allows this species to survive in waters with low oxygen content. The hemolysate of this fish showed the presence of two main haemoglobins, cathodic and anodic. This work describes structural features analyzed here by integration of molecular modeling with small angle X-ray scattering. Here is described a molecular model for the cathodic haemoglobin in the unliganded and liganded states. The models were determined by molecular modeling based on the high-resolution crystal structure of fish haemoglobins. The structural models for both forms of H. littorale haemoglobin were compared to human haemoglobin. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aggregation, gelation, and aging of urea-cross-linked siloxane-poly(oxyethylene) nanohybrids [(U600)-n] containing two different amounts of europium triflate initially dissolved in an ethanol-water mixture were investigated by in situ small-angle X-ray scattering (SAXS). For both low (n = [O]/[Eu] = 80) and high (n = 25) europium contents, the SAXS intensity was attributed to the formation of siloxane clusters of about 8-11 Angstrom in size. Siloxane cluster formation and growth is a rapid process in hybrids with low Eu contents and slow in Eu-rich hybrids. An additional contribution to the scattering intensity at very low angles was attributed to the formation of a coarse structure level. At this secondary level, the structure can be described as a set of dense domains containing siloxane clusters embedded in a depleted matrix composed of unfolded polymer chains and solvent. By fitting a theoretical function for this model to the experimental SAXS curves, relevant structural parameters were determined as functions of time during the sol-gel transition and gel aging. For hybrids with low europium contents (n = 80), the size of the siloxane clusters remains essentially invariant, whereas the dense segregation domains progressively grow. In hybrids with high doping contents (n = 25), the preponderant structure variation during the first stages of the sol-gel transformation is the slow growth of siloxane clusters. For these hybrids, the segregation of siloxane clusters forming dense domains occurs only during advanced stages of the process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The surface properties of SnO2 nanoparticles were modified by grafting ionic (Tiron (R). (OH)(2)C6H2(SO3Na)(2)(H2O)-H-.) or non-ionic (Catechol (R). C6H4-1,2-(OH)(2)) capping Molecules during aqueous sol-gel processing to improve the redispersibility of powdered xerogel. The effect of the amount of grafted organic molecules on the redispersibility of powders in aqueous solution at several basic pH values was Studied. The nanostructural features of the colloidal suspensions were analyzed by small angle X-ray scattering (SAXS) measurements. Irrespective of the nature and amount of grafted molecules, complete redispersion was obtained in aqueous solution at pH = 13. The redispersion at pH = 11 results in a mixture of dispersed primary particles and aggregates. The proportion of well dispersed nanoparticles and aggregates (and their average size) can be tuned by the quantity of grafted ionic molecules.