946 resultados para Silk fibroin, Ageing, 1H NMR, Rheology, Chain conformation, Pseudo-plastic flow


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several N,N -dipyridyl- and N-phenyl-N -pyridyl-thioureas were examined in different solvents at various temperatures by 1H NMR in order to study their conformational properties. The influence of concentration and the methyl substituent in the pyridine ring on the chemical shifts of the NH and pyridine groups was investigated. The observed chemical shifts are analysed in terms of the conformational properties of the molecules. Free energy barriers to the internal rotation about the C N bonds have been determined. Infrared spectra have been measured to supplement the NMR studies. Intramolecular hydrogen bonding played a major role in the preferred conformation of pyridylthioureas. The data further revealed an interesting dynamic exchange phenomenon occurring in symmetric N,N -dipyridylthioureas between two intramolecularly hydrogen bonded conformers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several N,N-²-arylalkyl thioureas were examined with 1H-NMR and i.r. spectra in order to study the conformation of the -NHCSNH- group. The influence of temperature and substituents on the chemical shift of the N---H protons has been investigated. Formation of a strong intramolecular hydrogen bond stabilizes the trans-cis conformation for most systems, while for the others the prevalence of different rotational isomers can be postulated. The influence of the steric effect on hydrogen bonding and molecular conformation is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diacetylenic phospholipid, 1,2 bis-(tricosa-10,12-diynoyl)-sn-glycero-3-phosphocholine (DC8,9PC), forms helices and tubules in addition to liposomes. The diacetylenic moiety responsible for the transformation is probed by 2-D NMR correlated spectroscopy. Chemical shift assignments and the analysis of 2D-COSY measurements were done on the lipid in chloroform-d solution. Based on this analysis, a model for the lipid is proposed. The geometry of the headgroup, glycerol backbone and acyl chains up to three methylenes from glycerol backbone [-(CH2)(3)-] is similar to that of dipalmitoyl phosphatidylcholine. The estimated torsional angle for methylene groups adjacent to diacetylenic moieties suggested an overall tilt of the diacetylenic lipid molecule from the bilayer axis of 25-30 degrees. This tilt could be negative or positive depending on the handedness of the resultant microstructures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The protein silk fibroin (SF) from the silkworm Bombyx mori is a FDA-approved biomaterial used over centuries as sutures wire. Importantly, several evidences highlighted the potential of silk biomaterials obtained by using so-called regenerated silk fibroin (RSF) in biomedicine, tissue engineering and drug delivery. Indeed, by a water-based protocol, it is possible to obtain protein water-solution, by extraction and purification of fibroin from silk fibres. Notably, RSF can be processed in a variety of biomaterials forms used in biomedical and technological fields, displaying remarkable properties such as biocompatibility, controllable biodegradability, optical transparency, mechanical robustness. Moreover, RSF biomaterials can be doped and/or chemical functionalized with drugs, optically active molecules, growth factors and/or chemicals In this view, activities of my PhD research program were focused to standardize the process of extraction and purification of protein to get the best physical and chemical characteristics. The analysis of the chemo-physical properties of the fibroin involved both the RSF water-solution and the protein processed in film. Chemo-physical properties have been studied through: vibrational (FT-IR and Raman-FT) and optical (absorption and emission UV-VIS) spectroscopy, nuclear magnetic resonance (1H and 13C NMR), thermal analysis and thermo-gravimetric scan (DSC and TGA). In the last year of my PhD, activities were focused to study and define innovative methods of functionalization of the silk fibroin solution and films. Indeed, research program was the application of different methods of manufacturing approaches of the films of fibroin without the use of harsh treatments and organic solvents. New approaches to doping and chemical functionalization of the silk fibroin were studied. Two different methods have been identified: 1) biodoping that consists in the doping of fibroin with optically active molecules through the addition of fluorescent molecules in the standard diet used for the breeding of silkworms; 2) chemical functionalization via silylation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pore architecture of scaffolds is known to play a critical role in tissue engineering as it provides the vital framework for seeded cells to organize into a functioning tissue. In this report we have investigated the effects of different concentrations of silk fibroin protein on three-dimensional (3D) scaffold pore microstructure. Four pore size ranges of silk fibroin scaffolds were made by the freeze drying technique, with the pore sizes ranging from 50 to 300 lm. The pore sizes of the scaffolds decreased as the concentration of fibroin protein increased. Human bone marrow mesenchymal stromal cells (BMSC) transfected with the BMP7 gene were cultured in these scaffolds. A cell viability colorimetric assay, alkaline phosphatase assay and reverse transcription-polymerase chain reaction were performed to analyze the effect of pore size on cell growth, the secretion of extracellular matrix (ECM) and osteogenic differentiation. Cell migration in 3D scaffolds was confirmed by confocal microscopy. Calvarial defects in SCID mice were used to determine the bone forming ability of the silk fibroin scaffolds incorporating BMSC expressing BMP7. The results showed that BMSC expressing BMP7 preferred a pore size between 100 and 300 lm in silk fibroin protein fabricated scaffolds, with better cell proliferation and ECM production. Furthermore, in vivo transplantation of the silk fibroin scaffolds combined with BMSC expressing BMP7 induced new bone formation. This study has shown that an optimized pore architecture of silk fibroin scaffolds can modulate the bioactivity of BMP7-transfected BMSC in bone formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pore architecture of scaffolds is known to play a critical role in tissue engineering as it provides the vital framework for the seeded cells to organize into a functioning tissue. In this report, we investigated the effects of different concentration on silk fibroin protein 3D scaffold pore microstructure. Four pore size ranges of silk fibroin scaffolds were made by freeze-dry technique, with the pore sizes ranging from 50 to 300 µm. The pore size of the scaffold decreases as the concentration increases. Human mesenchymal stem cells were in vitro cultured in these scaffolds. After BMP7 gene transferred, DNA assay, ALP assay, hematoxylin–eosin staining, alizarin red staining and reverse transcription-polymerase chain reaction were performed to analyze the effect of the pore size on cell growth, differentiation and the secretion of extracellular matrix (ECM). Cell morphology in these 3D scaffolds was investigated by confocal microscopy. This study indicates mesenchymal stem cells prefer the group of scaffolds with pore size between 100 and 300 µm for better proliferation and ECM production

Relevância:

100.00% 100.00%

Publicador:

Resumo:

From a computer simulation of the 270 MHz 1H NMR spectra of hydroxyproline (Hyp) and its protected derivatives, precise values of ring vicinal coupling constants were obtained. These couplings were related to ring torsional angles, using a Karplus type analysis. From the NMR analysis it was observed that the pyrrolidine ring possesses a unique and highly homogeneous conformation (Cγ-exo form). Temperature dependence studies on protected dipeptides suggest that the pyrrolidine ring conformation is independent of backbone conformation. An unusual X-Hyp, β-turn was observed for Boc-Aib-Hyp-NHMe.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Peptide NH chemical shifts and their temperature dependences have been monitored as a function of concentration for the decapeptide, Boc-Aib-Pro-Val-Aib-Val-Ala-Aib-Ala-Aib-Aib-OMe in CDCl3 (0.001-0.06M) and (CD3)2SO (0.001-0.03M). The chemical shifts and temperature coefficients for all nine NH groups show no significant concentration dependence in (CD3)2SO. Seven NH groups yield low values of temperature coefficients over the entire range, while one yields an intermediate value. In CDCl3, the Aib(1) NH group shows a large concentration dependence of both chemical shift and temperature coefficient, in contrast to the other eight NH groups. The data suggest that in (CD3)2SO, the peptide adopts a 310 helical conformation and is monomeric over the entire concentration range. In CDCl3, the 310 helical peptide associates at a concentration of 0.01M, with the Aib(1) NH involved in an intermolecular hydrogen bond. Association does not disrupt the intramolecular hydrogen-bonding pattern in the decapeptide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Summary Reasons for performing study: Metabonomics is emerging as a powerful tool for disease screening and investigating mammalian metabolism. This study aims to create a metabolic framework by producing a preliminary reference guide for the normal equine metabolic milieu. Objectives: To metabolically profile plasma, urine and faecal water from healthy racehorses using high resolution 1H-NMR spectroscopy and to provide a list of dominant metabolites present in each biofluid for the benefit of future research in this area. Study design: This study was performed using seven Thoroughbreds in race training at a single time-point. Urine and faecal samples were collected non-invasively and plasma was obtained from samples taken for routine clinical chemistry purposes. Methods: Biofluids were analysed using 1H-NMR spectroscopy. Metabolite assignment was achieved via a range of 1D and 2D experiments. Results: A total of 102 metabolites were assigned across the three biological matrices. A core metabonome of 14 metabolites was ubiquitous across all biofluids. All biological matrices provided a unique window on different aspects of systematic metabolism. Urine was the most populated metabolite matrix with 65 identified metabolites, 39 of which were unique to this biological compartment. A number of these were related to gut microbial host co-metabolism. Faecal samples were the most metabolically variable between animals; acetate was responsible for the majority (28%) of this variation. Short chain fatty acids were the predominant features identified within this biofluid by 1H-NMR spectroscopy. Conclusions: Metabonomics provides a platform for investigating complex and dynamic interactions between the host and its consortium of gut microbes and has the potential to uncover markers for health and disease in a variety of biofluids. Inherent variation in faecal extracts along with the relative abundance of microbial-mammalian metabolites in urine and invasive nature of plasma sampling, infers that urine is the most appropriate biofluid for the purposes of metabonomic analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on the dissolution of semi-domestic silk type Antheraea assamensis using ionic liquids. We investigated the impact of different coagulating solvents, including isopropanol and water on the structure and the morphology of the regenerated silk. We found that the water regenerated silk film showed a high β-sheet content and a native silk-like XRD pattern.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silk fibroin (SF) from Bombyx mori has many established excellent properties and has found various applications in the biomedical field. However, some abilities or capacities of SF still need improving to meet the need for using practically. Indeed, diverse SF-based composite biomaterials have been developed. Here we report the feasibility of fabricating pantothenic acid (vitamin B5, VB5)-reinforcing SF nanofibrous matrices for biomedical applications through green electrospinning. Results demonstrated the successful loading of D-pantothenic acid hemicalcium salt (VB5-hs) into resulting composite nanofibers. The introduction of VB5-hs did not alter the smooth ribbon-like morphology and the silk I structure of SF, but significantly decreased the mean width of SF fibers. SF conformation transformed into β-sheet from random coil when composite nanofibrous matrices were exposed to 75% (v/v) ethanol vapor. Furthermore, nanofibers still remained good morphology after being soaked in water environment for five days. Interestingly, as-prepared composite nanofibrous matrices supported a higher level of cell viability, especially in a long culture period and significantly assisted skin cells to survive under oxidative stress compared with pure SF nanofibrous matrices. These findings provide a basis for further extending the application of SF in the biomedical field, especially in the personal skin-care field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silk fibroin has been widely employed in various forms as biomaterials for biomedical applications due to its superb biocompatibility and tunable degradation and mechanical properties. Herein, silk fibroin microparticles of non-mulberry silkworm species (Antheraea assamensis, Antheraea mylitta and Philosamia ricini) were fabricated via a top-down approach using a combination of wet-milling and spray drying techniques. Microparticles of mulberry silkworm (Bombyx mori) were also utilized for comparative studies. The fabricated microparticles were physico-chemically characterized for size, stability, morphology, chemical composition and thermal properties. The silk fibroin microparticles of all species were porous (∼5μm in size) and showed nearly spherical morphology with rough surface as revealed from dynamic light scattering and microscopic studies. Non-mulberry silk microparticles maintained the typical silk-II structure with β-sheet secondary conformation with higher thermal stability. Additionally, non-mulberry silk fibroin microparticles supported enhanced cell adhesion, spreading and viability of mouse fibroblasts than mulberry silk fibroin microparticles (p<0.001) as evidenced from fluorescence microscopy and cytotoxicity studies. Furthermore, in vitro drug release from the microparticles showed a significantly sustained release over 3 weeks. Taken together, this study demonstrates promising attributes of non-mulberry silk fibroin microparticles as a potential drug delivery vehicle/micro carrier for diverse biomedical applications.