957 resultados para Siliciclastic deposits


Relevância:

70.00% 70.00%

Publicador:

Resumo:

High-resolution seismic-reflection data collected along the length of the Caloosahatchee River in southwestern Florida have been correlated to nannofossil biostratigraphy and strontium-isotope chemostratigraphy at six continuously cored boreholes. These data are interpreted to show a major Late Miocene(?) to Early Pliocene fluvial– deltaic depositional system that prograded southward across the carbonate Florida Platform, interrupting nearly continuous carbonate deposition since early in the Cretaceous. Connection of the platform top to a continental source of siliciclastics and significant paleotopography combined to focus accumulation of an immense supply of siliciclastics on the southeastern part of the Florida Platform. The remarkably thick (> 100 m), sand-rich depositional system, which is characterized by clinoformal progradation, filled in deep accommodation, while antecedent paleotopography directed deltaic progradation southward within the middle of the present-day Florida Peninsula. The deltaic depositional system may have prograded about 200 km southward to the middle and upper Florida Keys, where Late Miocene to Pliocene siliciclastics form the foundation of the Quaternary carbonate shelf and shelf margin of the Florida Keys. These far-traveled siliciclastic deposits filled accommodation on the southeastern part of the Florida Platform so that paleobathymetry was sufficiently shallow to allow Quaternary recovery of carbonate sedimentation in the area of southern peninsular Florida and the Florida Keys.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the Longroiva-Vilariça area, the identification of Cenozoic lithostratigraphic units, the sedimentology and the characterization of its geometric relations with tectonic structures allowed the interpretation of the palaeogeographic main stages: 1) the greenwhitish Vilariça Arkoses (Middle Eocene to Oligocene ?) represent proximal sediments of a very low gradient drainage towards the eastern Spanish Tertiary Duero Basin; 2)Quintãs Formation (late Miocene ?) are brown-reddish coloured piedmont alluvial deposits, correlative of important vertical displacement (western tectonic block relative uplift) along the NNE-SSW indent-linked strike-slip Bragança-Vilariça-Longroiva fault zone, interpreted as a reactivated deep hercynian fracture, with left-lateral movement; 3) the red Sampaio Formation (Gelasian-early Pleistocene ?)was interpreted as downhill conglomeratic deposits related with important overtrusting along this fault zone (the definition of the present-day narrow graben configuration) and correlative of the atlantic hydrographic incision stage beginning; 4) conglomeratic terraces (middle and late Pleistocene ?); 5) alluvial plains and colluvial deposits (Holocene).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A morpho-structural analysis was performed in the uplifted siliciclastic deposits of the Serra do Martins Formation along the Portalegre, Martins and Santana plateaux, in the southeastern and central regions of Rio Grande do Norte State. Due to the lack of biostratigraphic records, this formation has a disputable age.The adopted approach was based on the analysis of the drainage patterns and in the recognition of topographic surfaces and regional structures, subjected to neotectonic deformation and rejuvenation the present stress field. These events are recorded in the lineament arrays and as anomalous features of the landscape, such as the uplifted plateaux.The morpho-sculptural evolution of the studied blocks is expressed as erosive and accumulative processes. The former ones include erosional scarpments, cuestas and amphitheaters as the most characteristic features, while debris slopes represent acumulative examples. Such elements attest to the recent disequilibrium of the plateaux, and the absence of well developed alluvium terraces suggest an accelerated uplift process. The directions of the linear features observed in remote sensing products evidence the control of the basement structural trends, inherited from the pre-Cenozoic evolution. The NNE-SSW direction controls the main erosional features of the plateaux, while the N-S direction is a major drainage control, being also recognized in the Potiguar Basin. An E-W trend occurs as a less developed direction, reflecting either a system of mesozoic basic dykes or precambrian brittle structures. As regards to the drainage arrays, an arborescent, varying to a roughly N-S rectangular pattern, was identified in the Portalegre-Martins block. The Santana plateau displays rectilinear (northern border) and dendritic arborescent (southern border) patterns. In the sedimentary cover, the drainage pattern varies from rectangular to angular, reflecting inheritance from the crystaline basement. The most significative directions, N, NE and NW, mark the erosional fronts of the plateaux. Drainage anomalies, characterized by elbows or paralell confluencies, reinforce the arguments mentioned above. The data sets evidence the relationships between endogenous (lithology, structures) and exogenous features as the main controls of terrain dissecation, associated to vertical (epirogenesis) movements and horizontal tectonics. A final discussion addresses the relationships of the Serra do Martins Formation with the sedimentary record of Potiguar Basin, trying to establish chronostratigraphic links with the main evolutionary steps of this part of the Borborema Province, and possible mechanisms involved in the uplift of the plateaux and other stratigraphic units in the region

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Due to its high resolution, Ground Penetrating Radar (GPR) has been used to image subsurface sedimentary deposits. Because GPR and Seismic methods share some principles of image construction, the classic seismostratigraphic interpretation method has been also applied as an attempt to interpret GPR data. Nonetheless some advances in few particular contexts, the adaptations from seismic to GPR of seismostratigraphic tools and concepts unsuitable because the meaning given to the termination criteria in seismic stratigraphy do not represent the adequate geologic record in the GPR scale. Essentially, the open question relies in proposing a interpretation method for GPR data which allow not only relating product and sedimentary process in the GPR scale but also identifying or proposing depositional environments and correlating these results with the well known Sequence Stratigraphy cornerstones. The goal of this dissertation is to propose an interpretation methodology of GPR data able to perform this task at least for siliciclastic deposits. In order to do so, the proposed GPR interpretation method is based both on seismostratigraphic concepts and on the bounding surface hierarchy tool from Miall (1988). As consequence of this joint use, the results of GPR interpretation can be associated to the sedimentary facies in a genetic context, so that it is possible to: (i) individualize radar facies and correlate them to the sedimentary facies by using depositional models; (ii) characterize a given depositional system, and (iii) determine its stratigraphic framework highligthing how it evolved through geologic time. To illustrate its use the proposed methodology was applied in a GPR data set from Galos area which is part of the Galinhos spit, located in Rio Grande do Norte state, Northeastern Brazil. This spit presents high lateral sedimentary facies variation, containing in its sedimentary record from 4th to 6th cicles caused by high frequency sea level oscillation. The interpretation process was done throughout the following phases: (i) identification of a vertical facies succession, (ii) characterization of radar facies and its associated sedimentary products, (iii) recognition of the associated sedimentary process in a genetic context, and finally (iv) proposal of an evolutionay model for the Galinhos spit. This model proposes that the Galinhos spit is a barrier island constituted, from base to top, of the following sedimentary facies: tidal channel facies, tidal flat facies, shore facies, and aeolic facies (dunes). The tidal channel facies, in the base, is constituted of lateral accretion bars and filling deposits of the channels. The base facies is laterally truncated by the tidal flat facies. In the foreshore zone, the tidal flat facies is covered by the shore facies which is the register of a sea transgression. Finally, on the top of the stratigraphic column, aeolic dunes are deposited due to areal exposition caused by a sea regression

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This MSc thesis describes brittle deformation in two seismic zones located in north-eastern Brazil: João Câmara and São Rafael, Rio Grande do Norte State. Both areas show seismogenic faults, Samambaia and São Rafael, indicated by narrow zones of epicentres with a strike of 040o, a lenght of 30 km and 4 km, and a depth of 1-12 and 0,5-4 km, respectively. The first seismological and geological studies suggested blind faults or faults that were still in the beginning of the nucleation process. The region is under E-W-oriented compression and is underlain by Precambrian terrains, deformed by one or more orogenic cycles, which generated shear zones generally marked by strong pervasive foliation and sigmoidal shapes. The crystalline basement is capped by the Cretaceous Potiguar basin, which is also locally capped by Pliocene continental siliciclastic deposits (Barreiras Formation), and Quaternary alluvium. The main aim of this study was to map epicentral areas and find whether there are any surface geological or morphotectonic expression related to the seismogenic faults. A detailed geological map was carried out in both seismic areas in order to identify brittle structures and fault-related drainage/topographic features. Geological and morphotectonic evidence indicate that both seismogenic faults take place along dormant structures. They either cut Cenozoic rocks or show topographic expression, i.e., are related to topographic heights or depressions and straight river channels. Faults rocks in the Samambaia and São Rafael faults are cataclasite, fault breccia, fault gouge, pseudotachylyte, and quartz veins, which point to reactivation processes in different crustal levels. The age of the first Samambaia and the São Rafael faulting movement possibly ranges from late Precambrian to late Cretaceous. Both fault cut across Precambrian fabric. They also show evidence of brittle processes which took place between 4 and 12 km deep, which probably have not occurred in Cenozoic times. The findings are of great importance for regional seismic hazard. They indicate that fault zones are longer than previously suggested by seismogenic studies. According to the results, the methodology used during this thesis may also be useful in other neotectonic investigation in intraplate areas

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O histórico de prospecção de hidrocarbonetos da Bacia Paleozoica do Parnaíba, situada no norte-nordeste do Brasil, sempre foi considerado desfavorável quando comparado aos super-reservatórios estimados do Pré-Sal das bacias da Margem Atlântica e até mesmo interiores, como a Bacia do Solimões. No entanto, a descoberta de gás natural em depósitos da superseqüência mesodevoniana-eocarbonífera do Grupo Canindé, que incluem as formações Pimenteiras, Cabeças e Longá, impulsionou novas pesquisas no intuito de refinar a caracterização paleoambiental, paleogeográfica, bem como, entender o sistema petrolífero, os possíveis plays e a potencialidade do reservatório Cabeças. A avaliação faciológica e estratigráfica com ênfase no registro da tectônica glacial, em combinação com a geocronologia de zircão detrítico permitiu interpretar o paleoambiente e a proveniência do reservatório Cabeças. Seis associações de fácies agrupadas em sucessões aflorantes, com espessura máxima de até 60m registram a evolução de um sistema deltaico Devoniano influenciado por processos glaciais principalmente no topo da unidade. 1) frente deltaica distal, composta por argilito maciço, conglomerado maciço, arenito com acamamento maciço, laminação plana e estratificação cruzada sigmoidal 2) frente deltaica proximal, representada pelas fácies arenito maciço, arenito com laminação plana, arenito com estratificação cruzada sigmoidal e conglomerado maciço; 3) planície deltaica, representada pelas fácies argilito laminado, arenito maciço, arenito com estratificação cruzada acanalada e conglomerado maciço; 4) shoreface glacial, composta pelas fácies arenito com marcas onduladas e arenito com estratificação cruzada hummocky; 5) depósitos subglaciais, que englobam as fácies diamictito maciço, diamictito com pods de arenito e brecha intraformacional; e 6) frente deltaica de degelo, constituída pelas fácies arenito maciço, arenito deformado, arenito com laminação plana, arenito com laminação cruzada cavalgante e arenito com estratificação cruzada sigmoidal. Durante o Fammeniano (374-359 Ma) uma frente deltaica dominada por processos fluviais progradava para NW (borda leste) e para NE (borda oeste) sobre uma plataforma influenciada por ondas de tempestade (Formação Pimenteiras). Na borda leste da bacia, o padrão de paleocorrente e o espectro de idades U-Pb em zircão detrítico indicam que o delta Cabeças foi alimentado por áreas fonte situadas a sudeste da Bacia do Parnaíba, provavelmente da Província Borborema. Grãos de zircão com idade mesoproterozóica (~ 1.039 – 1.009 Ma) e neoproterozóica (~ 654 Ma) são os mais populosos ao contrário dos grãos com idade arqueana (~ 2.508 – 2.678 Ma) e paleoproterozóica (~ 2.054 – 1.992 Ma). O grão de zircão concordante mais novo forneceu idade 206Pb/238U de 501,20 ± 6,35 Ma (95% concordante) indicando idades de áreas-fonte cambrianas. As principais fontes de sedimentos do delta Cabeças na borda leste são produto de rochas do Domínio Zona Transversal e de plútons Brasilianos encontrados no embasamento a sudeste da Bacia do Parnaíba, com pequena contribuição de sedimentos oriundos de rochas do Domínio Ceará Central e da porção ocidental do Domínio Rio Grande do Norte. No Famenniano, a movimentação do supercontinente Gondwana para o polo sul culminou na implantação de condições glaciais concomitantemente com o rebaixamento do nível do mar e exposição da região costeira. O avanço das geleiras sobre o embasamento e depósitos deltaicos gerou erosão, deposição de diamictons com clastos exóticos e facetados, além de estruturas glaciotectônicas tais como plano de descolamento, foliação, boudins, dobras, duplex, falhas e fraturas que refletem um cisalhamento tangencial em regime rúptil-dúctil. O substrato apresentava-se inconsolidado e saturados em água com temperatura levemente abaixo do ponto de fusão do gelo (permafrost quente). Corpos podiformes de arenito imersos em corpos lenticulares de diamicton foram formados pela ruptura de camadas pelo cisalhamento subglacial. Lentes de conglomerados esporádicas (dump structures) nos depósitos de shoreface sugere queda de detritos ligados a icebergs em fases de recuo da geleira. A elevação da temperatura no final do Famenniano reflete a rotação destral do Gondwana e migração do polo sul da porção ocidental da América do Sul e para o oeste da África. Esta nova configuração paleogeográfica posicionou a Bacia do Parnaíba em regiões subtropicais iniciando o recuo de geleiras e a influência do rebound isostático. O alívio de pressão é indicado pela geração de sills e diques clásticos, estruturas ball-and-pillow, rompimento de camadas e brechas. Falhas de cavalgamento associadas à diamictitos com foliação na borda oeste da bacia sugerem que as geleiras migravam para NNE. O contínuo aumento do nível do mar relativo propiciou a instalação de sedimentação deltaica durante o degelo e posteriormente a implantação de uma plataforma transgressiva (Formação Longá). Diamictitos interdigitados com depósitos de frente deltaica na porção superior da Formação Cabeças correspondem a intervalos com baixo volume de poros e podem representar trapas estratigráficas secundárias no reservatório. As anisotropias primárias subglaciais do topo da sucessão Cabeças, em ambas as bordas da Bacia do Parnaíba, estende a influência glacial e abre uma nova perspectiva sobre a potencialidade efetiva do reservatório Cabeças do sistema petrolífero Mesodevoniano-Eocarbonífero da referida bacia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O Grupo Tucuruí de idade do final do Neoproterozoico aflora na região de Tucuruí, nordeste do Pará, ao longo da zona de transição entre o Cráton Amazônico e o Cinturão Araguaia, e constitui uma sucessão vulcanossedimentar contendo derrames basálticos e sills de diabásio intercalados com depósitos siliciclásticos. A Falha de Tucuruí, por cavalgamento, projetou estes conjuntos rochosos para oeste, resultando em cisalhamento e percolação de fluidos. Os depósitos siliciclásticos são constituídos por subarcóseos e siltitos amalgamados, cujas camadas orientam-se na direção NNE-SSW com mergulho baixo para SE, além de apresentar granocrescência e espessamento ascendente. Foram reconhecidas duas associações de fácies sedimentares: depósitos de antepraia e tempestitos de face litorânea. Estas associações de fáceis sugerem processos de transporte e sedimentação ligados a um ambiente marinho raso, seguindo da zona de foreshore até a zona de shoreface, sob influência de onda de tempestade. A análise petrográfica revelou a imaturidade textural e composicional dos arenitos e siltitos arcosianos, indicando, sobretudo, área fonte com proveniência próxima, predominantemente constituída de rochas ígneas de composição máfica a intermediária que estiveram sujeitas a condições mesodiagenéticas. Assim, os depósitos siliciclásticos do Grupo Tucuruí representam a porção preservada de um segmento costeiro influenciado por ondas de tempestade em uma bacia do tipo rifte ou antepaís, com área fonte próxima, forte gradiente de relevo e deposição rápida, marcada predominantemente por intemperismo físico, e que foi atingida durante sua formação por vulcanismo efusivo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Depósitos siliciclásticos da Formação Raizama de idade ediacarana-cambriana são expostos descontinuamente ao longo da margem sul do Cráton Amazônico e Faixa Paraguai Norte, centro-oeste do Brasil. Estes depósitos são interpretados por sucessões costeiras progradacionais, sobrepondo em conformidade os depósitos carbonáticos do Grupo Araras. A análise faciológica e estratigráfica da seção aflorante na região de Nobres, Estado do Mato Grosso, permitiu a individualização de dezessete fácies sedimentares agrupadas em cinco associações de fácies (AF): AF1) shoreface inferior consiste de arenitos com laminação plano-paralela e truncada por onda (microhummocky), intercalados por pelitos laminados, e com níveis bioturbados por tubos verticais perfurantes; AF2) shoreface superior, formada por arenitos com estratificação plano-paralela e cruzada swaley; AF3) submaré, composta por arenitos com estratificações cruzadas tangenciais e acanaladas com recobrimentos de siltito/arenito muito fino interpretados como depósitos de canal e barras; AF4) planície de maré é caracterizada por arenitos com estratificação cruzada tangencial e sigmoidal, laminação plano-paralela a cruzada de baixo ângulo, gretas de contração, intercalados por siltititos/arenito muito finos com acamamento flaser, organizados em ciclos de raseamento ascendente; e AF5) fluvial entrelaçado distal é constituída por arenitos com estratificação cruzada acanalada com lags lateralmente descontínuos, estratificações plano-paralelas e cruzadas de baixo-ângulo, parcialmente retrabalhadas por onda. A sedimentação da Formação Raizama indica que o fornecimento de sedimentos siliciclásticos estariam relacionado a soerguimentos no Cráton à noroeste da área estudada, sucedendo os depósitos carbonáticos do Grupo Araras. Traços fósseis tubulares descritos na AF1 indicam, pela primeira vez, a presença de traços fósseis perfurantes sugerindo uma idade deposicional para Formação Raizama mais próxima ao limite Ediacarano-Cambriano.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During the Sedimentation of the platform carbonate deposits of the Korallenoolith Formation (middle Oxfordian to early Kimmeridgian) small buildups ofcorals formed in the Lower Saxony Basin. These bioconstructions are restricted to particular horizons (Untere Korallenbank,ßorigenuna-Bank Member etc.) and represent patch reefs and biostromes. In this study, the development of facies, fossil assemblages, spatial distribution of fossils, and reefs of the ßorigenuna-Bank Member (upper Middle Oxfordian) in the Süntel Mts and the eastern Wesergebirge Mts is described; the formation of reefs is discussed in detail. Twelve facies types are described and interpreted. They vary between high-energy deposits as well winnowed oolites and quiet-water lagoonal mudstones. Owing to the significance of biota, micro- and macrofossils are systematically described. The reefs are preserved in growth position, are characterized by numerous corresponding features and belong to a certain reef type. According to their size, shape and framework, they represent patch reefs, coral knobs (sensu James, 1983), coral thrombolite reefs (sensu Leinfelder et al., 1994) or “Klein- and Mitteldickichte” (sensu Laternser, 2001). Their growth fabric corresponds to the superstratal (dense) pillarstone (sensu Insalaco, 1998). As the top of the ßorigenuna-Bank displays an erosional unconformity (so-called Hauptdiskontinuität), the top of the reefs are erosionally capped. Their maximum height amounts to at least the maximum thickness of the ßorigenuna-Bank which does not exceed 4 metres. The diversity of coral fauna of the reefs is relatively low; a total of 13 species is recorded. The coral community is over- whelmingly dominated by the thin-branched ramose Thamnasteria dendroidea (Lamouroux) that forms aggregations of colonies (77?. dendroidea thickets). Leafy to platy Fungiastrea arachnoides (Parkinson) and Thamnasteria concinna (Goldfuss) occur subordinately, other species are only of minor importance. In a few cases, the reef-core consisting of Th. dendroidea thickets is laterally encrusted by platy F. arachnoides and Th. concinna colonies, and microbial carbonates. This zonation reflects probably a succession of different reef builders as a result of changing environmental conditions (allogenic succession). Moreover, some reefs are overlain by a biostrome made of large Solenopora jurassica nodules passing laterally in a nerinean bed. Mikrobial carbonates promoted reef growth and favoured the preservation of reef organismn in their growth position or in situ. They exhibit a platy, dendroid, or reticulate growth form or occur as downward-facing hemispheroids. According to their microstructure, they consist of a peloidal, clotted, or unstructured fabric (predominately layered and poorly structured thrombolite as well as clotted leiolite) (sensu Schmid, 1996). Abundant endo- and epibiontic organisms (bivalves, gastropods, echinoids, asteroids, ophiuroids, crabs etc) are linked to the reefs. With regard to their guild structure, the reefs represent occurrences at which only a few coral species serve as builder. Moreover, microbial carbonates contribute to both building and binding of the reefs. Additional binder as well as baffler are present, but not abundant. According to the species diversity, the dweller guild comprises by far the highest number of invertebrate taxa. The destroyer guild chiefly encompasses bivalves. The composition of the reef community was influenced by the habitat structure of the Th. dendroidea thickets. Owing to the increase in encrusting organisms and other inhabitants of the thickets, the locational factors changed, since light intensity and hydrodynamic energy level and combined parameters as oxygen supply declined in the crowded habitat. Therefore a characteristic succession of organisms is developed that depends on and responds to changing environmental conditions („community replacement sequence“). The succession allows the differentiation of different stages. It started after the cessation of the polyps with boring organisms and photoautotrophic micro-encrusters (calcareous algae, Lithocodium aggregatum). Following the death of these pioneer organisms, encrusting and adherent organisms (serpulids, „Terebella“ species, bryozoans, foraminifers, thecideidinids, sklerospongid and pharetronid sponges, terebratulids), small mobile organisms (limpets), and microbial induced carbonates developed. The final stage in the community replacement sequence gave rise to small cryptic habitats and organisms that belong to these caves (cryptobionts, coelobites). The habitat conditions especially favoured small non-rigid demosponges (“soft sponges”) that tolerate reduced water circulation. Reef rubble is negligible, so that the reefs are bordered by fossiliferous micritic limestone passing laterally in micritic limestone. Approximately 10% of the study area (outcropping florigemma-Bank) corresponds to reefal deposits whereas the remaining 90% encompass lagoonal inter-reefal deposits. The reef development is a good example for the interaction between reef growth, facies development and sea-level changes. It was initiated by a sea-level rise (transgression) and corresponding decrease in the hydrodynamic energy level. Colonization and reef growth took place on a coarse-grained Substrate composed of oncoids, larger foraminifers and bioclasts. Reef growth took place in a calm marine lagoonal setting. Increasing abundance of spherical coral morphs towards the Northeast (section Kessiehausen, northwestem Süntel Mts) reflects higher turbidity and a facies transition to coral occurrences of the ßorigenuna-Bank Member in the adjacent Deister Mts. The reef growth was neither influenced by stonns nor by input of siliciclastic deposits, and took place in short time - probably in only a thousand years under most probably mesotrophic conditions. The mass appearance of solenoporids and nerineids in the upper part of the ßorigenuna-Bank Member point to enhanced nutrient level as a result of regression. In addition, this scenario of fluctuations in nutrient availability seems to be responsible for the cessation of reef corals. The sea level fall reached its climax in the subaerial exposure and palaeokarst development of the florigemma-Bank. The reef building corals are typical pioneer species. The blade-like, flattened F. amchnoides colonies are characterized by their light porous calcium carbonate skeleton, which is a distinct advantage in soft bottom environment. Thus, they settled on soft bottom exposing the large parts of its surface to the incoming light. On the other hand, in response to their light requirements they were also able to settle shaded canopy structures or reef caves. Th. dendroidea is an opportunistic coral species in very shallow, well illuminated marine environment. Their thin and densely spaced branches led to a very high surface/volume ratio of the colonies that were capable to exploit incoming light due to their small thamasterioid calices characterized by “highly integrated polyps”. In addition, sideward coalescence of branches during colony growth led to a wave-resistant framework and favoured the authochthonous preservation of the reefs. Asexual reproduction by fragmented colonies promoted reef development as Th. dendroidea thickets laterally extend over the sea floor or new reefs have developed from broken fragments of parent colonies. Similar build ups with Th. dendroidea as a dominant or frequent reef building coral species are known from the Paris Basin and elsewhere from the Lower Saxony Basin (Kleiner Deister Mts). These buildups developed in well-illuminated shallow water and encompass coral reefs or coral thrombolite reefs. Intra- and inter-reef deposits vary between well-winnowed reef debris limestone and mudstones representing considerably calmer conditions. Solenoporid, nerineids and diceratides belong to the characteristic fossils of these occurrences. However, diceratides are missing in theflorigemma-Bank Member. Th. dendroidea differs in its colonization of low- to high-energy environment from recent ramose scleractinian corals (e.g., Acropora and Porites sp.). The latter are restricted to agitated water habitats creating coral thickets and carpets. According to the morphologic plasticity of Th. dendroidea, thick-branched colonies developed in a milieu of high water energy, whereas fragile, wide- and thin-branched colonies prevail in low-energy settings. Due to its relatively rapid growth, Th. dendroidea was able to keep pace with increased Sedimentation rates. 68 benthonic foraminiferan species/taxa have been recognized in thin sections. Agglutinated foraminifers (textulariids) predominate when compared with rotaliids and milioliids. Numerous species are restricted to a certain facies type or occur in higher population densities, in particular Everticyclammina sp., a larger agglutinated foraminifer that occurs in rock building amounts. Among the 25 reef dwelling foraminiferal species, a few were so far only known from Late Jurassic sponge reefs. Another striking feature is the frequency of adherent foraminiferal species. Fauna and flora, in particular dasycladaleans and agglutinated foraminifers, document palaeobiogeographic relationships to the Tethys and point to (sub)tropical conditions. Moreover, in Germany this foraminiferan assemblage is yet uncompared. In Southern Germany similar tethyan type assemblages are not present in strata as young as Middle Tithonian.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

On the Cape Verde Plateau, Neogene deposits are composed of major pelagic and hemipelagic sediments. These sediments show climatic sequences composed of two lithologic terms that differ in their siliciclastic and carbonate contents. Several turbiditic and contouritic sequences are interbedded in these deposits. Turbidite sequences are fine grained and thin bedded with a very low frequency (about 12 sequences during the Neogene). They are composed of quartz-rich siliciclastic or volcaniclastic sediments. Quartz-rich turbidites originated from the Senegalese margin. Their slightly higher frequency during the early Pliocene indicates that the stronger turbidity currents, and probably the most abundant continental inputs, occur at that period. Volcaniclastic turbidites are only present in the early Miocene (about 17 Ma) and the early Pleistocene (1 Ma). They have flown from adjacent Cape Verde Islands and reflect two episodes of high volcanic activity in this area. Contourite sequences, composed of biogenic sandy silts, represent less than 5% of the sediment pile and seem to have been mainly deposited during the late Pleistocene. These different sequences show clay mineral variations throughout Neogene time. Kaolinite is predominant in the Miocene and lower Pliocene deposits; this mineral decreases thereafter, with an increased trend of illite in the uppermost Pliocene and Pleistocene sediments, suggesting a change in sediment sources on the Saharan continent at about 2.6 Ma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Lower Cretaceous and Miocene sequences of the NW African passive continental margin consist of siliciclastic, volcaniclastic and hybrid sediments. These sediments contain a variety of diagenetic carbonates associated with zeolites, smectite clays and pyrite, reflecting the detrital mineralogical composition and conditions which prevailed during opening of the North Atlantic. In the Lower Cretaceous siliciclastic sediments, siderite (-6 per mil to +0.7per mil d18O PDB, -19.6 per mil to +0.6 per mil d13C PDB) was precipitated as thin layers and nodules from modified marine porewaters with input of dissolved carbon from the alteration of organic matter. Microcrystalline dolomite layers, lenses, nodules and disseminated crystals (-3.0 per mil to +2.5 per mil d18O PDB, -7.2 per mil to +4.9 per mil d13C PDB) predominate in slump and debris-flow deposits within the Lower Miocene sequence. During the opening of the Atlantic, volcanic activity in the Canary Islands area resulted in input of volcaniclastic sediments to the Middle and Upper Miocene sequences. Calcite is the dominant diagenetic carbonate in the siliciclastic-bioclastic-volcaniclastic hybrid and in the volcaniclastic sediments, which commonly contain pore-rimming smectite. Diagenetic calcite (-22 per mil to +1.6 per mil d18O PDB, -35.7 per mil to +0.8 per mil d13C PDB) was precipitated due to the interaction of volcaniclastic and bioclastic grains with marine porewaters. Phillipsite is confined to the alteration of volcaniclastic sediments, whereas clinoptilolite is widely disseminated, occurring essentially within foraminiferal chambers, and formed due to the dissolution of biogenic silica.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alternations between siliciclastic, carbonate and evaporitic sedimentary systems, as recorded in the Aptian mixed succession of southern Tunisia, reflect profound palaeoceanographic and palaeoclimatic changes in this area of the southern Tethyan margin. The evolution from Urgonian-type carbonates (Berrani Formation, lower Aptian) at the base of the series, to intervals dominated by gypsum or detrital deposits in the remainder of the Aptian is thought to result from the interplay between climate change and tectonic activity that affected North Africa. Based on the evolution of clay mineral assemblages, the early Aptian is interpreted as having been dominated by slightly humid conditions, since smectitic minerals are observed. Near the early to late Aptian boundary, the onset of a gypsiferous sedimentation is associated with the appearance of palygorskite and sepiolite, which supports the installation of arid conditions in this area of the southern Tethyan margin. The evaporitic sedimentation may have also been promoted by the peculiar tectonic setting of the Bir Oum Ali area during the Aptian, where local subsidence may have been tectonically enhanced linked to the opening of northern and central Atlantic. Stress associated with the west and central African rift systems may have triggered the development of NW-SE, hemi-graben structures. Uplifted areas may have constituted potential new sources for clastic material that has been subsequently deposited during the late Aptian. Chemostratigraphic (d13C) correlation of the Bir Oum Ali succession with other peri-Tethyan regions complements biostratigraphic findings, and indicates that a potential expression of the Oceanic Anoxic Event (OAE) 1a may be preserved in this area of Tunisia. Although the characteristic negative spike at the base of this event is not recognized in the present study, a subsequent, large positive excursion with d13C values is of similar amplitude and absolute values to that reported from other peri-Tethyan regions, thus supporting the identification of isotopic segments C4-C7 of the OAE1a. The absence of the negative spike may be linked to either non preservation or non deposition: the OAE1a occurred in a global transgressive context, and since the Bir Oum Ali region was located in the innermost part of the southern Tethyan margin during most of the Aptian, stratigraphic hiatuses may have been longer than in other regions of the Tethys. This emphasizes the importance of integrating several stratigraphic disciplines (bio-, chemo- and sequence stratigraphy) when performing long-distance correlation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insufficient availability of osteogenic cells limits bone regeneration through cell-based therapies. This study investigated the potential of amniotic fluid–derived stem (AFS) cells to synthesize mineralized extracellular matrix within porous medical-grade poly-e-caprolactone (mPCL) scaffolds. The AFS cells were initially differentiated in two-dimensional (2D) culture to determine appropriate osteogenic culture conditions and verify physiologic mineral production by the AFS cells. The AFS cells were then cultured on 3D mPCL scaffolds (6-mm diameter9-mm height) and analyzed for their ability to differentiate to osteoblastic cells in this environment. The amount and distribution of mineralized matrix production was quantified throughout the mPCL scaffold using nondestructive micro computed tomography (microCT) analysis and confirmed through biochemical assays. Sterile microCT scanning provided longitudinal analysis of long-term cultured mPCL constructs to determine the rate and distribution of mineral matrix within the scaffolds. The AFS cells deposited mineralized matrix throughout the mPCL scaffolds and remained viable after 15 weeks of 3D culture. The effect of predifferentiation of the AFS cells on the subsequent bone formation in vivo was determined in a rat subcutaneous model. Cells that were pre-differentiated for 28 days in vitro produced seven times more mineralized matrix when implanted subcutaneously in vivo. This study demonstrated the potential of AFS cells to produce 3D mineralized bioengineered constructs in vitro and in vivo and suggests that AFS cells may be an effective cell source for functional repair of large bone defects