989 resultados para Sex chromosomes


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Triatoma klugi is a Chagas disease vector in the Rio Grande do Sul State. Triatominae chromosomes are holocentric and sex chromosomes segregation is post-reductional. In this paper we describe the karyotype of male T. klugi and a meiotic analysis including the nucleolar behavior during spermatogenesis. Testis cells were analyzed after lacto-acetic orcein and silver nitrate staining. Two autosomes and the heterochromosomes presented nucleolar activity (Ag-NORs) during diplotene-diakinesis. The analysis of metaphase I and II revealed a karyotype with 2n = 20+XY. In metaphase I a prominent nucleolar mass was observed in the cell periphery and small silver grains were detected in metaphase II. During anaphase, the chromosomes segregated in parallel and a typical holocentric late migration behavior was observed. The restoration of the nucleolus was an important feature in this phase. During telophase nucleolar masses persisted and in early spermiogenesis the spermatids presented a small peripheral mass until elongation. The present study is a contribution to the study of chromatin behavior and nucleolar persistence in meiosis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We studied the karyotype, spermatogenesis and nucleolar activity at spermatogenesis in five species of Heteropera: Hyalymenus sp and Neomegalotomus pallescens, Alydidae; Catorhintha guttula and Hypselonotus fulvus, Coreidae; and Niesthrea sidae, Rhopalidae. They showed a red (Alydidae) or orange (Coreidae and Rhopalidae) membrane covering the testes, which consisted of seven testicular lobes, except in N. pallescens, which had only five. All the species had m-chromosomes, an X0 sex chromosome system and 10 (Hyalymenus sp, N. pallescens, and N. sidae), 16 (H. fulvus) or 22 (C. guttula) autosomes. Similar to the other species described to date, all these species showed holocentric chromosomes, interstitial chiasmata in most autosomes, and autosomes dividing reductionally in the first meiotic division and equationally in the second, while sex chromosomes, divided equationally and reductionally in the first and second meiotic divisions, respectively. In addition, we observed that the sex chromosome is heteropycnotic at prophase and that heteropycnotic chromosomal material is found in the nuclei at spermatogenesis; variation in size, shape and location of the nucleolar material occurs during spermatogenesis, denoting a variable degree of activity in the different stages.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Y chromosomes are genetically degenerate and do not recombine with their matching partners X. Non-recombination of XY pairs has been pointed out as the key factor for the degeneration of the Y chromosome. The aim here is to show that there is a mathematical asymmetry in sex chromosomes which leads to the degeneration of Y chromosomes even in the absence of XX and XY recombination. A model for sex-chromosome evolution in a stationary regime is proposed. The consequences of their asymmetry are analyzed and lead us to a couple of conclusions. First, Y chromosome degeneration shows up v 2 more often than X chromosome degeneration. Second, if nature prohibits female mortalities from beeing exactly 50%, then Y chromosome degeneration is inevitable.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Y chromosomes are genetically degenerated and do not recombine with their matching partners X. Recombination of XX pairs is pointed out as the key factor for the Y chromosome degeneration. However, there is an additional evolutionary force driving sex-chromosomes evolution. Here we show this mechanism by means of two different evolutionary models, in which sex chromosomes with non-recombining XX and XY pairs of chromosomes is considered. Our results show three curious effects. First, we observed that even when both XX and XY pairs of chromosomes do not recombine, the Y chromosomes still degenerate. Second, the accumulation of mutations on Y chromosomes followed a completely different pattern then those accumulated on X chromosomes. and third, the models may differ with respect to sexual proportion. These findings suggest that a more primeval mechanism rules the evolution of Y chromosomes due exclusively to the sex-chromosomes asymmetry itself, i.e., the fact that Y chromosomes never experience female bodies. Over aeons, natural selection favored X chromosomes spontaneously, even if at the very beginning of evolution, both XX and XY pairs of chromosomes did not recombine.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work we describe the cytogenetic analyses performed in specimens of Astylus variegatus (Germar, 1824) collected in two localities: one area of natural vegetation and one of agricultural crops, where agrochemical products were used. Astylus variegatus had karyotypes with 2n(male) = 16+Xy p and 2n (female) = 16+XXp, with exclusively metacentric chromosomes. Pachytene spermatocytes showed synapsed autosomal bivalents and non-associated sex chromosomes. In diplotene, the autosomal bivalents exhibited one or two terminal chiasmata and the Xy p had a typical parachute configuration. In meiotic cells of some specimens, an extra chromosome, interpreted as a B chromosome, was observed. C-banding showed constitutive heterochromatin in the pericentromeric region of all chromosomes, with the exception of the y p. Silver nitrate staining revealed one nucleolus organizer region (NOR) on the terminal region of the short arm of the second autosome pair. Silver staining of meiotic cells confirmed the NOR pattern detected in mitotic cells and revealed an argentophilous material on the Xy p. A cytogenetic comparison between the two populations of A. variegatus showed a statistically significant divergence (chi2 = 117.10; df = 1) in the number of aneuploid cells and a higher frequency of B chromosome in the population exposed to agrochemicals.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Spermatogenesis was analysed by C-banding in two species of triatomines, Panstrongylus megistus and Fl herreri. Both species revealed interstitial and terminal bands in the autosomes, which is a common pattern in Heteroptera. The terminal bands corroborated the hypothesis that in holocentric chromosomes the heterochromatin is preferentially located at the telomere. The sex chromosomes in FI herreri were totally heterochromatic in spermatogenesis, and in P. megistus the X chromosomes alternated between positive and negative banding.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The first cytogenetic analysis of fireflies from Brazilian fauna was carried out in this work. The investigation of two species of the subfamily Lampyrinae, Aspisoma maculatum and Photinus sp. (aff. pyralis), showed the diploid number 2n = 19 and an X0 sex determination system in males. These observations are similar to those already described for all the Lampyrinae species previously studied. In contrast, Bicellonycha lividipennis (Photurinae) revealed the karyotype 2n = 16 + neoXY, which has not yet been registered for any firefly species. The neoXY sex determination system encountered in this species probably arose through fusion between an ancestral X sex chromosome, belonging to the X0 system, and an autosomal element. This event also reduced the diploid number from 2n = 19, which is more frequent in the family Lampyridae, to 2n = 18 in B. lividipennis. The analysis of meiotic cells showed that the neoXY sexual bivalent of B. lividipennis exhibited a prominent terminal chiasma, indicating that the sex chromosomes are not wholly differentiated and still retain a region of homology. A review of the cytogenetic data known for the family Lampyridae was also documented in this work, as well as a discussion on the main trends of chromosomal evolution that seem to have occurred in this group.