952 resultados para Security computing
Resumo:
Dissertação apresentada à Escola Superior de Tecnologia do Instituto Politécnico de Castelo Branco para cumprimento dos requisitos necessários à obtenção do grau de Mestre em Desenvolvimento de Software e Sistemas Interativos, realizada sob a orientação científica Professor Doutor Osvaldo Arede dos Santos, do Instituto Politécnico de Castelo Branco.
Resumo:
Urban Computing (UrC) provides users with the situation-proper information by considering context of users, devices, and social and physical environment in urban life. With social network services, UrC makes it possible for people with common interests to organize a virtual-society through exchange of context information among them. In these cases, people and personal devices are vulnerable to fake and misleading context information which is transferred from unauthorized and unauthenticated servers by attackers. So called smart devices which run automatically on some context events are more vulnerable if they are not prepared for attacks. In this paper, we illustrate some UrC service scenarios, and show important context information, possible threats, protection method, and secure context management for people.
Resumo:
The relation between the information/knowledge expression and the physical expression can be involved as one of items for an ambient intelligent computing [2],[3]. Moreover, because there are so many contexts around user/spaces during a user movement, all appplcation which are using AmI for users are based on the relation between user devices and environments. In these situations, it is possible that the AmI may output the wrong result from unreliable contexts by attackers. Recently, establishing a server have been utilizes, so finding secure contexts and make contexts of higher security level for save communication have been given importance. Attackers try to put their devices on the expected path of all users in order to obtain users informationillegally or they may try to broadcast their SPAMS to users. This paper is an extensionof [11] which studies the Security Grade Assignment Model (SGAM) to set Cyber-Society Organization (CSO).
Resumo:
By antipirates
Resumo:
The development of cloud computing services is speeding up the rate in which the organizations outsource their computational services or sell their idle computational resources. Even though migrating to the cloud remains a tempting trend from a financial perspective, there are several other aspects that must be taken into account by companies before they decide to do so. One of the most important aspect refers to security: while some cloud computing security issues are inherited from the solutions adopted to create such services, many new security questions that are particular to these solutions also arise, including those related to how the services are organized and which kind of service/data can be placed in the cloud. Aiming to give a better understanding of this complex scenario, in this article we identify and classify the main security concerns and solutions in cloud computing, and propose a taxonomy of security in cloud computing, giving an overview of the current status of security in this emerging technology.
Resumo:
Grid computing is an emerging technology for providing the high performance computing capability and collaboration mechanism for solving the collaborated and complex problems while using the existing resources. In this paper, a grid computing based framework is proposed for the probabilistic based power system reliability and security analysis. The suggested name of this computing grid is Reliability and Security Grid (RSA-Grid). Then the architecture of this grid is presented. A prototype system has been built for further development of grid-based services for power systems reliability and security assessment based on probabilistic techniques, which require high performance computing and large amount of memory. Preliminary results based on prototype of this grid show that RSA-Grid can provide the comprehensive assessment results for real power systems efficiently and economically.
Resumo:
Individuals and corporate users are persistently considering cloud adoption due to its significant benefits compared to traditional computing environments. The data and applications in the cloud are stored in an environment that is separated, managed and maintained externally to the organisation. Therefore, it is essential for cloud providers to demonstrate and implement adequate security practices to protect the data and processes put under their stewardship. Security transparency in the cloud is likely to become the core theme that underpins the systematic disclosure of security designs and practices that enhance customer confidence in using cloud service and deployment models. In this paper, we present a framework that enables a detailed analysis of security transparency for cloud based systems. In particular, we consider security transparency from three different levels of abstraction, i.e., conceptual, organisation and technical levels, and identify the relevant concepts within these levels. This allows us to provide an elaboration of the essential concepts at the core of transparency and analyse the means for implementing them from a technical perspective. Finally, an example from a real world migration context is given to provide a solid discussion on the applicability of the proposed framework.
Resumo:
Unauthorized accesses to digital contents are serious threats to international security and informatics. We propose an offline oblivious data distribution framework that preserves the sender's security and the receiver's privacy using tamper-proof smart cards. This framework provides persistent content protections from digital piracy and promises private content consumption.
Resumo:
In recent years, vehicular cloud computing (VCC) has emerged as a new technology which is being used in wide range of applications in the area of multimedia-based healthcare applications. In VCC, vehicles act as the intelligent machines which can be used to collect and transfer the healthcare data to the local, or global sites for storage, and computation purposes, as vehicles are having comparatively limited storage and computation power for handling the multimedia files. However, due to the dynamic changes in topology, and lack of centralized monitoring points, this information can be altered, or misused. These security breaches can result in disastrous consequences such as-loss of life or financial frauds. Therefore, to address these issues, a learning automata-assisted distributive intrusion detection system is designed based on clustering. Although there exist a number of applications where the proposed scheme can be applied but, we have taken multimedia-based healthcare application for illustration of the proposed scheme. In the proposed scheme, learning automata (LA) are assumed to be stationed on the vehicles which take clustering decisions intelligently and select one of the members of the group as a cluster-head. The cluster-heads then assist in efficient storage and dissemination of information through a cloud-based infrastructure. To secure the proposed scheme from malicious activities, standard cryptographic technique is used in which the auotmaton learns from the environment and takes adaptive decisions for identification of any malicious activity in the network. A reward and penalty is given by the stochastic environment where an automaton performs its actions so that it updates its action probability vector after getting the reinforcement signal from the environment. The proposed scheme was evaluated using extensive simulations on ns-2 with SUMO. The results obtained indicate that the proposed scheme yields an improvement of 10 % in detection rate of malicious nodes when compared with the existing schemes.
Resumo:
This paper presents a proposal for a management model based on reliability requirements concerning Cloud Computing (CC). The proposal was based on a literature review focused on the problems, challenges and underway studies related to the safety and reliability of Information Systems (IS) in this technological environment. This literature review examined the existing obstacles and challenges from the point of view of respected authors on the subject. The main issues are addressed and structured as a model, called "Trust Model for Cloud Computing environment". This is a proactive proposal that purposes to organize and discuss management solutions for the CC environment, aiming improved reliability of the IS applications operation, for both providers and their customers. On the other hand and central to trust, one of the CC challenges is the development of models for mutual audit management agreements, so that a formal relationship can be established involving the relevant legal responsibilities. To establish and control the appropriate contractual requirements, it is necessary to adopt technologies that can collect the data needed to inform risk decisions, such as access usage, security controls, location and other references related to the use of the service. In this process, the cloud service providers and consumers themselves must have metrics and controls to support cloud-use management in compliance with the SLAs agreed between the parties. The organization of these studies and its dissemination in the market as a conceptual model that is able to establish parameters to regulate a reliable relation between provider and user of IT services in CC environment is an interesting instrument to guide providers, developers and users in order to provide services and secure and reliable applications.
Resumo:
Although the ASP model has been around for over a decade, it has not achieved the expected high level of market uptake. This research project examines the past and present state of ASP adoption and identifies security as a primary factor influencing the uptake of the model. The early chapters of this document examine the ASP model and ASP security in particular. Specifically, the literature and technology review chapter analyses ASP literature, security technologies and best practices with respect to system security in general. Based on this investigation, a prototype to illustrate the range and types of technologies that encompass a security framework was developed and is described in detail. The latter chapters of this document evaluate the practical implementation of system security in an ASP environment. Finally, this document outlines the research outputs, including the conclusions drawn and recommendations with respect to system security in an ASP environment. The primary research output is the recommendation that by following best practices with respect to security, an ASP application can provide the same level of security one would expect from any other n-tier client-server application. In addition, a security evaluation matrix, which could be used to evaluate not only the security of ASP applications but the security of any n-tier application, was developed by the author. This thesis shows that perceptions with regard to fears of inadequate security of ASP solutions and solution data are misguided. Finally, based on the research conducted, the author recommends that ASP solutions should be developed and deployed on tried, tested and trusted infrastructure. Existing Application Programming Interfaces (APIs) should be used where possible and security best practices should be adhered to where feasible.
Resumo:
One of the major problems when using non-dedicated volunteer resources in adistributed network is the high volatility of these hosts since they can go offlineor become unavailable at any time without control. Furthermore, the use ofvolunteer resources implies some security issues due to the fact that they aregenerally anonymous entities which we know nothing about. So, how to trustin someone we do not know?.Over the last years an important number of reputation-based trust solutionshave been designed to evaluate the participants' behavior in a system.However, most of these solutions are addressed to P2P and ad-hoc mobilenetworks that may not fit well with other kinds of distributed systems thatcould take advantage of volunteer resources as recent cloud computinginfrastructures.In this paper we propose a first approach to design an anonymous reputationmechanism for CoDeS [1], a middleware for building fogs where deployingservices using volunteer resources. The participants are reputation clients(RC), a reputation authority (RA) and a certification authority (CA). Users needa valid public key certificate from the CA to register to the RA and obtain thedata needed to participate into the system, as now an opaque identifier thatwe call here pseudonym and an initial reputation value that users provide toother users when interacting together. The mechanism prevents not only themanipulation of the provided reputation values but also any disclosure of theusers' identities to any other users or authorities so the anonymity isguaranteed.
Resumo:
Résumé La cryptographie classique est basée sur des concepts mathématiques dont la sécurité dépend de la complexité du calcul de l'inverse des fonctions. Ce type de chiffrement est à la merci de la puissance de calcul des ordinateurs ainsi que la découverte d'algorithme permettant le calcul des inverses de certaines fonctions mathématiques en un temps «raisonnable ». L'utilisation d'un procédé dont la sécurité est scientifiquement prouvée s'avère donc indispensable surtout les échanges critiques (systèmes bancaires, gouvernements,...). La cryptographie quantique répond à ce besoin. En effet, sa sécurité est basée sur des lois de la physique quantique lui assurant un fonctionnement inconditionnellement sécurisé. Toutefois, l'application et l'intégration de la cryptographie quantique sont un souci pour les développeurs de ce type de solution. Cette thèse justifie la nécessité de l'utilisation de la cryptographie quantique. Elle montre que le coût engendré par le déploiement de cette solution est justifié. Elle propose un mécanisme simple et réalisable d'intégration de la cryptographie quantique dans des protocoles de communication largement utilisés comme les protocoles PPP, IPSec et le protocole 802.1li. Des scénarios d'application illustrent la faisabilité de ces solutions. Une méthodologie d'évaluation, selon les critères communs, des solutions basées sur la cryptographie quantique est également proposée dans ce document. Abstract Classical cryptography is based on mathematical functions. The robustness of a cryptosystem essentially depends on the difficulty of computing the inverse of its one-way function. There is no mathematical proof that establishes whether it is impossible to find the inverse of a given one-way function. Therefore, it is mandatory to use a cryptosystem whose security is scientifically proven (especially for banking, governments, etc.). On the other hand, the security of quantum cryptography can be formally demonstrated. In fact, its security is based on the laws of physics that assure the unconditional security. How is it possible to use and integrate quantum cryptography into existing solutions? This thesis proposes a method to integrate quantum cryptography into existing communication protocols like PPP, IPSec and the 802.l1i protocol. It sketches out some possible scenarios in order to prove the feasibility and to estimate the cost of such scenarios. Directives and checkpoints are given to help in certifying quantum cryptography solutions according to Common Criteria.