960 resultados para Science Education and Technology


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Committee chairman: James D. Watkins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Policy has been a much neglected area for research in science education. In their neglect of policy studies, researchers have maintained an ongoing naivete about the politics of science education. In doing so, they often overestimate the implications of their research findings about practice and ignore the interplay between the stakeholders beyond and in-school who determine the nature of the curriculum for science education and its enacted character. Policies for education (and science education in particular) always involve authority and values, both of which raise sets of fascinating questions for research. The location of authority for science education differs across educational systems in ways that affect the role teachers are expected to play. Policies very often value some groups in society over others, as the long history of attempts to provide science for all students testifies. As research on teaching/learning science identifies pedagogies that have widespread effectiveness, the policy issue of mandating these becomes important. Illustrations of successful policy to practice suggest that establishing conditions that will facilitate the intended implementation is critically important. The responsibility of researchers for critiquing and establishing policy for improving the practice of science education is discussed, together with the role research associations could play if they are to claim their place as key stakeholders in science education.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For a number of years now it has been evident that the major issue facing science educators in the more developed countries of the world is the quantitative decline in enrolments in the senior secondary sciences, particularly the physical sciences, and in the number of higher achieving students applying for places in universities to undertake further studies in science. The deep malaise in school science to which these quantitative measures point has been elucidated by more qualitative studies of the students’ experience of studying science in secondary school in several of these countries (Sweden, Lindahl (2003); England, Simon and Osborne (2002); and Australia, Lyons (2005)). Remarkably concordant descriptions of these experiences can be summarized as: School science is: • transmission of knowledge from the teacher or the textbook to the students. • about content that is irrelevant and boring to our lives. • difficult to learn in comparison with other subjects Incidentally, the Australian study only involved consistently high achieving students; but even so, most of them found science more difficult than other more interesting subjects, and concluded that further science studies should be avoided unless they were needed for some career purpose. Other more representative confirmations of negative evaluations of the science curricula across Australia (and in particular states) are now available in Australia, from the large scale reviews of Goodrum, Hackling and Rennie (2001) and from the TIMSS (2002). The former reported that well under half of secondary students find the science at school relevant to my future, useful ion everyday life, deals with things I am concerned with and helps me make decisions about my health.. TIMSS found that 62 and 65 % of females and males in Year 4 agree with I like learning science, but by Year 8 only 26 and 33 % still agree. Students in Japan have been doubly notably because of (a) their high performance in international measures of science achievement like TIMSS and PISA and (b) their very low response to items in these studies which relate to interest in science. Ogura (2003) reported an intra-national study of students across Years 6-9 (upper primary through Junior High); interest in a range of their subjects (including science) that make up that country’s national curriculum. There was a steady decline in interest in all these subjects which might have indicated an adolescent reaction against schooling generally. However, this study went on to ask the students a further question that is very meaningful in the Japanese context, If you discount the importance of this subject for university entrance, is it worth studying? Science and mathematics remained in decline while all the other subjects were seen more positively. It is thus ironic, at a time when some innovations in curriculum and other research-based findings are suggesting ways that these failures of school science might be corrected, to find school science under a new demands that come from quite outside science education, and which certainly do not have the correction of this malaise as a priority. The positive curricular and research findings can be characterized as moves from within science education, whereas the new demands are moves that come from without science education. In this paper I set out these two rather contrary challenges to the teaching of science as it is currently practised, and go on to suggest a way forward that could fruitfully combine the two.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This chapter focuses on two challenges to science teachers’ knowledge that Fensham identifies as having recently emerged—one a challenge from beyond Science and the other a challenge from within Science. Both challenges stem from common features of contemporary society, namely, its complexity and uncertainty. Both also confront science teachers with teaching situations that contrast markedly with the simplicity and certainty that have been characteristic of most school science education, and hence both present new demands for science teachers’ knowledge and skill. The first, the challenge from without Science, comes from the new world of work and the “knowledge society”. Regardless of their success in traditional school learning, many young persons in many modern economies are now seen as lacking other knowledge and skills that are essential for their personal, social and economic life. The second, the challenge from within Science, derives from changing notions of the nature of science itself. If the complexity and uncertainty of the knowledge society demand new understandings and contributions from science teachers, these are certainly matched by the demands that are posed by the role of complexity and uncertainty in science itself.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The globalized nature of modern society has generated a number of pressures that impact internationally on countries’ policies and practices of science education. Among these pressures are key issues of health and environment confronting global science, global economic control through multinational capitalism, comparative and competitive international testing of student science achievement, and the desire for more humane and secure international society. These are not all one-way pressures and there is evidence of both more conformity in the intentions and practices of science education and of a greater appreciation of how cultural differences, and the needs of students as future citizens can be met. Hence while a case for economic and competitive subservience of science education can be made, the evidence for such narrowing is countered by new initiatives that seek to broaden its vision and practices. The research community of science education has certainly widened internationally and this generates many healthy exchanges, although cultural styles of education other than Western ones are still insufficiently recognized. The dominance of English language within these research exchanges is, however, causing as many problems as it solves. Science education, like education as a whole, is a strongly cultural phenomenon, and this provides a healthy and robust buffer to the more negative effects of globalization

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The focus of this Handbook is on Australasia (a region loosely recognized as that which includes Australia and New Zealand plus nearby Pacific nations such as Papua New Guinea, Solomon Islands, Fiji, Tonga, Vanuatu, and the Samoan islands) science education and the scholarship that most closely supports this program. The reviews of the research situate what has been accomplished within a given field in Australasian rather than international context. The purpose therefore is to articulate and exhibit regional networks and trends that produced specific forms of science education. The thrust lies in identifying the roots of research programs and sketching trajectories—focusing the changing façade of problems and solutions within regional contexts. The approach allows readers review what has been done and accomplished, what is missing, and what might be done next.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Horticultural knowledge and skills training have been with humankind for some 10,000 to 20,000 years. With permanent settlement and rising wealth and trade, horticulture products and services became a source of fresh food for daily consumption, and a source of plant material in developing a quality environment and lifestyle. The knowledge of horticulture and the skills of its practitioners have been demonstrated through the advancing civilizations in both eastern and western countries. With the rise of the Agricultural Revolutions in Great Britain, and more widely across Continental Europe in the 17th and 18th centuries, as well as the move towards colonisation and early migration to the New Worlds, many westernised countries established the early institutions that would provide education and training in agriculture and horticulture. Today many of these colleges and universities provide undergraduate, postgraduate and vocational and technical training that specifically targets horticulture and/or horticultural science with some research and teaching institutions also providing extension and advisory services to industry. The objective of this chapter is to describe the wider pedagogic and educational context in which those concerned with horticulture operate, the institutional structures that target horticulture and horticultural science education and training internationally; examine changing educational formats, especially distance education; and consider strategies for attracting and retaining young people in the delivery of world-class horticultural education. In this chapter we set the context by investigating the horticultural education and training options available, the constraints that prevent young people entering horticulture, and suggest strategies that would attract and retain these students. We suggest that effective strategies and partnerships be put in place by the institution, the government and most importantly the industry to provide for undergraduate and postgraduate education in horticulture and horticultural science; that educational and vocational training institutions, government, and industry need to work more effectively together to improve communication about horticulture and horticultural science in order to attract enrolments of more and talented students; and that the horticulture curriculum be continuously evaluated and revised so that it remains relevant to future challenges facing the industries of horticulture in the production, environmental and social spheres. These strategies can be used as a means to develop successful programs and case studies that would provide better information to high school career counsellors, improve the image of horticulture and encourage greater involvement from alumni and the industries in recruitment, provide opportunities to improve career aspirations, ensure improved levels of remuneration, and promote the social features of the profession and greater awareness and recognition of the profession in the wider community. A successful career in horticulture demands intellectual capacities which are capable of drawing knowledge from a wide field of basic sciences, economics and the humanities and integrating this into academic scholarship and practical technologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper discusses the history of the relationship between science education and environmental education in Australian and international contexts and argues that - given the on-going resistances to environmental education in schools, the static nature of science education practices, and declining student interest in studying traditional science subject - it is time to reconsider the relationship. If we are to achieve sustainable development, then science education must have a role in encouraging ecological thinking. However, the science education that can be an appropriate 'host' for environmental education is not necessarily that currently practised, but a reconceptualized form could well be what is needed. From a historical perspective this paper suggests that it might be time to reconsider science education's function as a 'host' for environmental education and try to imagine a more mutualistic relationship.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Concerns regarding students' learning and reasoning in chemistry classrooms are well documented. Students' reasoning in chemistry should be characterized by conscious consideration of chemical phenomenon from laboratory work at macroscopic, molecular/sub-micro and symbolic levels. Further, students should develop metacognition in relation to such ways of reasoning about chemistry phenomena. Classroom change eliciting metacognitive experiences and metacognitive reflection is necessary to shift entrenched views of teaching and learning in students. In this study, Activity Theory is used as the framework for intepreting changes to the rules/customs and tools of the activity systems of two different classes of students taught by the same teacher, Frances, who was teaching chemical equilibrium to those classes in consecutive years. An interpretive methodolgy involving multiple data sources was employed. Frances explicitly changed her pedagogy in the second year to direct students attention to increasingly consider chemical phenomena at the molecular/sub-micro level. Additonally, she asked students not to use the textbook until toward the end of the equilibrium unit and sought to engage them in using their prior knowledge of chemistry to understand their observations from experiments. Frances' changed pedagogy elicited metacognitive experiences and reflection in students and challenged them to reconsider their metacognitive beliefs about learning chemistry and how it might be achieved. While teacher change is essential for science education reform, students are not passive players in the change efforts and they need to be convinced of the viability of teacher pedagogical change in the context of their goals, intentions, and beliefs.