988 resultados para Sampling error


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantitative use of satellite-derived rainfall products for various scientific applications often requires them to be accompanied with an error estimate. Rainfall estimates inferred from low earth orbiting satellites like the Tropical Rainfall Measuring Mission (TRMM) will be subjected to sampling errors of nonnegligible proportions owing to the narrow swath of satellite sensors coupled with a lack of continuous coverage due to infrequent satellite visits. The authors investigate sampling uncertainty of seasonal rainfall estimates from the active sensor of TRMM, namely, Precipitation Radar (PR), based on 11 years of PR 2A25 data product over the Indian subcontinent. In this paper, a statistical bootstrap technique is investigated to estimate the relative sampling errors using the PR data themselves. Results verify power law scaling characteristics of relative sampling errors with respect to space-time scale of measurement. Sampling uncertainty estimates for mean seasonal rainfall were found to exhibit seasonal variations. To give a practical example of the implications of the bootstrap technique, PR relative sampling errors over a subtropical river basin of Mahanadi, India, are examined. Results reveal that the bootstrap technique incurs relative sampling errors < 33% (for the 2 degrees grid), < 36% (for the 1 degrees grid), < 45% (for the 0.5 degrees grid), and < 57% (for the 0.25 degrees grid). With respect to rainfall type, overall sampling uncertainty was found to be dominated by sampling uncertainty due to stratiform rainfall over the basin. The study compares resulting error estimates to those obtained from latin hypercube sampling. Based on this study, the authors conclude that the bootstrap approach can be successfully used for ascertaining relative sampling errors offered by TRMM-like satellites over gauged or ungauged basins lacking in situ validation data. This technique has wider implications for decision making before incorporating microwave orbital data products in basin-scale hydrologic modeling.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

[1] Cloud cover is conventionally estimated from satellite images as the observed fraction of cloudy pixels. Active instruments such as radar and Lidar observe in narrow transects that sample only a small percentage of the area over which the cloud fraction is estimated. As a consequence, the fraction estimate has an associated sampling uncertainty, which usually remains unspecified. This paper extends a Bayesian method of cloud fraction estimation, which also provides an analytical estimate of the sampling error. This method is applied to test the sensitivity of this error to sampling characteristics, such as the number of observed transects and the variability of the underlying cloud field. The dependence of the uncertainty on these characteristics is investigated using synthetic data simulated to have properties closely resembling observations of the spaceborne Lidar NASA-LITE mission. Results suggest that the variance of the cloud fraction is greatest for medium cloud cover and least when conditions are mostly cloudy or clear. However, there is a bias in the estimation, which is greatest around 25% and 75% cloud cover. The sampling uncertainty is also affected by the mean lengths of clouds and of clear intervals; shorter lengths decrease uncertainty, primarily because there are more cloud observations in a transect of a given length. Uncertainty also falls with increasing number of transects. Therefore a sampling strategy aimed at minimizing the uncertainty in transect derived cloud fraction will have to take into account both the cloud and clear sky length distributions as well as the cloud fraction of the observed field. These conclusions have implications for the design of future satellite missions. This paper describes the first integrated methodology for the analytical assessment of sampling uncertainty in cloud fraction observations from forthcoming spaceborne radar and Lidar missions such as NASA's Calipso and CloudSat.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In species of conservation concern it is often difficult to be certain that population diversity and structure have been adequately characterised by genetic sampling. Since practical and financial constraints tend to be associated with increasing sample sizes in many conservation genetic studies, it is important to consider the potential for sampling error and bias due to inadequate samples or spatio-temporal structure within populations. We analysed sequence data from the mitochondrial DNA control region in a large sample (n = 245) of green sea turtles Chelonia mydas collected at the globally important rookery of Ascension Island, South Atlantic. We examined genetic diversity and structure among 10 sampling sites, 4 beach clusters and 4 nesting seasons, and evaluated the genetic composition of Ascension against other Atlantic nesting populations, including the well-studied rookery at Tortuguero (Costa Rica). Finally, we used rarefaction and GENESAMP analyses to assess the ability of different sample sizes to provide acceptable genetic representations of a population, using Ascension and Tortuguero as models. On Ascension, we found 13 haplotypes, of which only 3 had been previously observed in the rookery, and 5 previously undescribed. We detected no differentiation among beach clusters or sampling seasons, and only weak differentiation among the 3 primary nesting sites. The increased sample size for Ascension provided higher resolution and statistical power in describing genetic structure among all other known Atlantic rookeries. Our extrapolations showed that a maximum of 18 and 6 haplotypes are expected to occur in Ascension and Tortuguero, respectively, and that current sample sizes are sufficient to describe most of the variation. We recommend using rarefaction and GENESAMP analyses on a rookery-by-rookery basis to evaluate whether a sample set adequately describes mitochondrial DNA diversity, thus strengthening subsequent phylogeographic and mixed stock analyses, and management recommendations for conservation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Phylogenetic inference from sequences can be misled by both sampling (stochastic) error and systematic error (nonhistorical signals where reality differs from our simplified models). A recent study of eight yeast species using 106 concatenated genes from complete genomes showed that even small internal edges of a tree received 100% bootstrap support. This effective negation of stochastic error from large data sets is important, but longer sequences exacerbate the potential for biases (systematic error) to be positively misleading. Indeed, when we analyzed the same data set using minimum evolution optimality criteria, an alternative tree received 100% bootstrap support. We identified a compositional bias as responsible for this inconsistency and showed that it is reduced effectively by coding the nucleotides as purines and pyrimidines (RY-coding), reinforcing the original tree. Thus, a comprehensive exploration of potential systematic biases is still required, even though genome-scale data sets greatly reduce sampling error.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Self-reported health status measures are generally used to analyse Social Security Disability Insurance's (SSDI) application and award decisions as well as the relationship between its generosity and labour force participation. Due to endogeneity and measurement error, the use of self-reported health and disability indicators as explanatory variables in economic models is problematic. We employ county-level aggregate data, instrumental variables and spatial econometric techniques to analyse the determinants of variation in SSDI rates and explicitly account for the endogeneity and measurement error of the self-reported disability measure. Two surprising results are found. First, it is shown that measurement error is the dominating source of the bias and that the main source of measurement error is sampling error. Second, results suggest that there may be synergies for applying for SSDI when the disabled population is larger. © 2011 Taylor & Francis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The export of sediments from coastal catchments can have detrimental impacts on estuaries and near shore reef ecosystems such as the Great Barrier Reef. Catchment management approaches aimed at reducing sediment loads require monitoring to evaluate their effectiveness in reducing loads over time. However, load estimation is not a trivial task due to the complex behaviour of constituents in natural streams, the variability of water flows and often a limited amount of data. Regression is commonly used for load estimation and provides a fundamental tool for trend estimation by standardising the other time specific covariates such as flow. This study investigates whether load estimates and resultant power to detect trends can be enhanced by (i) modelling the error structure so that temporal correlation can be better quantified, (ii) making use of predictive variables, and (iii) by identifying an efficient and feasible sampling strategy that may be used to reduce sampling error. To achieve this, we propose a new regression model that includes an innovative compounding errors model structure and uses two additional predictive variables (average discounted flow and turbidity). By combining this modelling approach with a new, regularly optimised, sampling strategy, which adds uniformity to the event sampling strategy, the predictive power was increased to 90%. Using the enhanced regression model proposed here, it was possible to detect a trend of 20% over 20 years. This result is in stark contrast to previous conclusions presented in the literature. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although subsampling is a common method for describing the composition of large and diverse trawl catches, the accuracy of these techniques is often unknown. We determined the sampling errors generated from estimating the percentage of the total number of species recorded in catches, as well as the abundance of each species, at each increase in the proportion of the sorted catch. We completely partitioned twenty prawn trawl catches from tropical northern Australia into subsamples of about 10 kg each. All subsamples were then sorted, and species numbers recorded. Catch weights ranged from 71 to 445 kg, and the number of fish species in trawls ranged from 60 to 138, and invertebrate species from 18 to 63. Almost 70% of the species recorded in catches were "rare" in subsamples (less than one individual per 10 kg subsample or less than one in every 389 individuals). A matrix was used to show the increase in the total number of species that were recorded in each catch as the percentage of the sorted catch increased. Simulation modelling showed that sorting small subsamples (about 10% of catch weights) identified about 50% of the total number of species caught in a trawl. Larger subsamples (50% of catch weight on average) identified about 80% of the total species caught in a trawl. The accuracy of estimating the abundance of each species also increased with increasing subsample size. For the "rare" species, sampling error was around 80% after sorting 10% of catch weight and was just less than 50% after 40% of catch weight had been sorted. For the "abundant" species (five or more individuals per 10 kg subsample or five or more in every 389 individuals), sampling error was around 25% after sorting 10% of catch weight, but was reduced to around 10% after 40% of catch weight had been sorted.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We proposed a high accuracy image sensor technique for sinusoidal phase-modulating interferometer in the field of the surface profile measurements. It solved the problem of the CCD's pixel offset of the same column under two adjacent rows, eliminated the spectral leakage, and reduced the influence of external interference to the measurement accuracy. We measured the surface profile of a glass plate, and its repeatability precision was less than 8 nm and its relative error was 1.15 %. The results show that it can be used to measure surface profile with high accuracy and strong anti-interference ability. (C) 2007 Elsevier GmbH. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During the last century, the population of Pacific sardine (Sardinops sagax) in the California Current Ecosystem has exhibited large fluctuations in abundance and migration behavior. From approximately 1900 to 1940, the abundance of sardine reached 3.6 million metric tons and the “northern stock” migrated from offshore of California in the spring to the coastal areas near Oregon, Washington, and Vancouver Island in the summer. In the 1940s, the sardine stock collapsed and the few remaining sardine schools concentrated in the coastal region off southern California, year-round, for the next 50 years. The stock gradually recovered in the late 1980s and resumed its seasonal migration between regions off southern California and Canada. Recently, a model was developed which predicts the potential habitat for the northern stock of Pacific sardine and its seasonal dynamics. The habitat predictions were successfully validated using data from sardine surveys using the daily egg production method; scientific trawl surveys off the Columbia River mouth; and commercial sardine landings off Oregon, Washington, and Vancouver Island. Here, the predictions of the potential habitat and seasonal migration of the northern stock of sardine are validated using data from “acoustic–trawl” surveys of the entire west coast of the United States during the spring and summer of 2008. The estimates of sardine biomass and lengths from the two surveys are not significantly different between spring and summer, indicating that they are representative of the entire stock. The results also confirm that the model of potential sardine habitat can be used to optimally apply survey effort and thus minimize random and systematic sampling error in the biomass estimates. Furthermore, the acoustic–trawl survey data are useful to estimate concurrently the distributions and abundances of other pelagic fishes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A água é essencial à manutenção da vida. No entanto, com as situações de estresse hídrico - disponibilidade hídrica inferior a 1.700 m per capita ao ano (FALKENMARK, 1989) - vivenciadas em diversos pontos do planeta, somadas ao acelerado crescimento da população mundial, os problemas relacionados ao uso da água tendem a aumentar. Neste contexto, a pegada hídrica (PH), que é um indicador de sustentabilidade ambiental, se torna uma importante ferramenta de gestão de recursos hídricos pois indica o consumo de água doce com base em seus usos. O presente trabalho objetiva mensurar a pegada hídrica em função das componentes industrial, doméstica e alimentar da população do bairro Rocinha, um aglomerado subnormal localizado no município do Rio de Janeiro. A pesquisa se deteve a um Estudo de Caso de 20 sub-bairros da comunidade. Sua abordagem foi quantitativa, contando com uma amostra de 203 domicílios, erro amostral de 7% e grau de confiança de 93%. Para tal, foi utilizada como ferramenta de cálculo o modelo Water Footprint Network do ano de 2005. Os resultados indicaram que, em média, a PH dos indivíduos que compõem a amostra é de 1715 m/ano per capita assim divididos: PH de consumo doméstico de água de 175 m/ano per capita (479 l/hab.dia); PH de produtos agrícolas igual a 1470 m/ano per capita, e PH de produtos industrializados de 70 m/ano per capita. Os resultados obtidos sugerem que os indivíduos da amostra com uma maior despesa mensal tendem a ter pegadas hídricas industrial e total também maiores.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although subsampling is a common method for describing the composition of large and diverse trawl catches, the accuracy of these techniques is often unknown. We determined the sampling errors generated from estimating the percentage of the total number of species recorded in catches, as well as the abundance of each species, at each increase in the proportion of the sorted catch. We completely partitioned twenty prawn trawl catches from tropical northern Australia into subsamples of about 10 kg each. All subsamples were then sorted, and species numbers recorded. Catch weights ranged from 71 to 445 kg, and the number of fish species in trawls ranged from 60 to 138, and invertebrate species from 18 to 63. Almost 70% of the species recorded in catches were “rare” in subsamples (less than one individual per 10 kg subsample or less than one in every 389 individuals). A matrix was used to show the increase in the total number of species that were recorded in each catch as the percentage of the sorted catch increased. Simulation modelling showed that sorting small subsamples (about 10% of catch weights) identified about 50% of the total number of species caught in a trawl. Larger subsamples (50% of catch weight on average) identified about 80% of the total species caught in a trawl. The accuracy of estimating the abundance of each species also increased with increasing subsample size. For the “rare” species, sampling error was around 80% after sorting 10% of catch weight and was just less than 50% after 40% of catch weight had been sorted. For the “abundant” species (five or more individuals per 10 kg subsample or five or more in every 389 individuals), sampling error was around 25% after sorting 10% of catch weight, but was reduced to around 10% after 40% of catch weight had been sorted.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

介绍一种利用空间向量求解坐标变换关系的方法,简化了传统的坐标系之间坐标变换关系求解的复杂计算,减小了采样误差对计算结果的影响.为建立各物体之间的位姿关系描述提供了有效的数学计算手段

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We read with interest the comments offered by Drs. Hughes and Bradley (1) on our systematic review (2). Four single nucleotide polymorphisms (SNPs), rs9332739 and rs547154 in the complement component 2 gene (C2) and rs4151667 and rs641153 in the complement factor B gene (CFB), were pooled. Hughes and Bradley point out that we omitted the most common variant, rs12614. In fact, rs12614 is in high linkage disequilibrium (LD) with rs641153, which was included, and the major allele of both of these SNPs is in the range of 90% (population code, CEU, in the International HapMap Project (http://hapmap.ncbi.nlm.nih.gov/)). Moreover, our review was initiated in September 2010, at which point only 4 studies had published associations with rs12614, whereas 14 studies (n = 11,378) were available for rs641153. While it is true that both SNPs are better analyzed as a haplotype, these data were simply not available for pooling.
Hughes and Bradley also point out that we obtained and pooled new data that were not previously published. While it is recommended that contact with authors be completed as part of a comprehensive meta-analysis, we acknowledge that these additional data were not previously published and peer reviewed and, hence, do not have the same level of transparency. However, given that sample collections often increase over time and that the instrumentation for genotyping is continually improving, we thought that it would be advantageous to use the most recent information; this is a subjective decision.
We also agree that the allele frequencies given by Kaur et al. (3) were exactly opposite to those expected and were suggestive of strand flipping. However, we specifically queried this with the lead author on 2 separate occasions and were assured it was not.
Hughes and Bradley do make an interesting suggestion that SNPs in high LD should be used as a gauge of genotyping quality in HuGE reviews. This is an interesting idea but difficult to put into practice as the r2 parameter they propose as a measure of LD has some unusual properties. Although r2 is a measure of LD, it is also linked to the allele frequency; even small differences in allele frequencies between 2 linked SNPs can reduce the r2 dramatically. Wray (4) explored these effects and found that, at a baseline allele frequency of 10%, even a difference in allele frequency between 2 SNPs as small as 2% can drop the r2 value below 0.8. This degree of allele frequency difference is consistent with what could be expected for sampling error. Furthermore, when we look at 2 linked dialleleic SNPs, giving 4 possible haplotypes, the absence of 1 haplotype dramatically reduces r2, despite the 2 loci being in high LD as measured by D'. In fact, this is the situation for rs12614 and rs641153, where the low frequency of 1 haplotype means that the r2 is 0.01 but the D' is 1.
Hughes and Bradley also suggest consideration of genotype call rate restrictions as an inclusion criterion for metaanalysis. This would be more appropriate when focusing on genetic variants per se, as considered within the context of a genome-wide association study or other specific genetic analysis where large numbers of SNPs are evaluated (5).
The concerns raised by Hughes and Bradley reflect the limited ability of a meta-analysis based on summary data to tease out inconsistencies best identified at the individual level. We agree that SNPs in LD should be evaluated, but this will not necessarily be straightforward. A move to make genetic data sets publicly available, as in the Database of Genotypes and Phenotypes (http://www.ncbi.nlm.nih.gov/ gap), is a step in the right direction for greater transparency.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effects of repeated survey and fieldwork timing on data derived from a recently proposed standard field methodology for empirical estimation of Relative Pollen Productivity have been tested. Seasonal variations in vegetation and associated pollen assemblages were studied in three contrasting cultural habitat types; semi-natural ancient woodlands, lowland heaths, and unimproved, traditionally managed hay meadows. Results show that in woodlands and heathlands the standard method generates vegetation data with a reasonable degree of similarity throughout the field season, though in some instances additional recording of woodland canopy cover should be undertaken, and differences were greater for woodland understorey taxa than for arboreal taxa. Large differences in vegetation cover were observed over the field season in the grassland community, and matching the phenological timing of surveys within and between studies is clearly important if RPP estimates from these sites are to be comparable. Pollen assemblages from closely co-located moss polsters collected on different visits are shown to be variable in all communities, to a greater degree than can be explained by the sampling error associated with pollen counting, and further study of moss polsters as pollen traps is recommended.