944 resultados para Salmonella-typhimurium


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phagocytic cells are a critical line of defense against infection. The ability of a pathogen to survive and even replicate within phagocytic cells is a potent method of evading the defense mechanisms of the host. A number of pathogens survive within macrophages after phagocytosis and this contributes to their virulence. Salmonella is one of these pathogens. Here we report that 6-14 hr after Salmonella enters the macrophage and replicates, it resides in large vacuoles and causes the destruction of these cells. Furthermore, we identified four independently isolated MudJ-lacZ insertion mutants that no longer cause the formation of these vacuoles or kill the macrophages. All four insertions were located in the ompR/envZ regulon. These findings suggest that killing and escape from macrophages may be as important steps in Salmonella pathogenesis as are survival and replication in these host cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mapping the insertion points of 16 signature-tagged transposon mutants on the Salmonella typhimurium chromosome led to the identification of a 40-kb virulence gene cluster at minute 30.7. This locus is conserved among all other Salmonella species examined but is not present in a variety of other pathogenic bacteria or in Escherichia coli K-12. Nucleotide sequencing of a portion of this locus revealed 11 open reading frames whose predicted proteins encode components of a type III secretion system. To distinguish between this and the type III secretion system encoded by the inv/spa invasion locus known to reside on a pathogenicity island, we refer to the inv/spa locus as Salmonella pathogenicity island (SPI) 1 and the new locus as SPI2. SPI2 has a lower G+C content than that of the remainder of the Salmonella genome and is flanked by genes whose products share greater than 90% identity with those of the E. coli ydhE and pykF genes. Thus SPI2 was probably acquired horizontally by insertion into a region corresponding to that between the ydhE and pykF genes of E. coli. Virulence studies of SPI2 mutants have shown them to be attenuated by at least five orders of magnitude compared with the wild-type strain after oral or intraperitoneal inoculation of mice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the role of the Salmonella typhimurium fimbrial operon formed by the genes lpfABCDE in infection of mice. A mutant in lpfC, the gene encoding the fimbrial outer membrane usher, had an approximately 5-fold increased 50% lethal dose when administered orally to mice. When mice were infected with a mixture of the lpfC mutant and isogenic wild-type S. typhimurium, the lpfC mutant was recovered in lower numbers from Peyer's patches, mesenteric lymph nodes, liver, and spleen. In an organ culture model using murine intestinal loops, lpfC mutants were shown to be associated in lower numbers than wild-type bacteria with Peyer's patches but not with villous intestine. The defect of the lpfC mutant in adhesion to Peyer's patches could be complemented by introducing lpfABCDE on a cosmid. Similarly, heterologous expression of the Salmonella lpf operon in Escherichia coli resulted in an increased adhesion to histological thin sections of Peyer's patch lymph follicles. Electron microscopic analysis of histological sections taken from Peyer's patches after intragastric infection of mice showed that, in contrast to the S. typhimurium wild type, the isogenic lpfC mutant did not destroy M cells of the follicle-associated epithelium. These data show that the Salmonella lpf operon is involved in adhesion to murine Peyer's patches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Paradoxically, nitric oxide (NO) has been found to exhibit cytotoxic, antiproliferative, or cytoprotective activity under different conditions. We have utilized Salmonella mutants deficient in antioxidant defenses or peptide transport to gain insights into NO actions. Comparison of three NO donor compounds reveals distinct and independent cellular responses associated with specific redox forms of NO. The peroxynitrite (OONO-) generator 3-morpholinosydnonimine hydrochloride mediates oxygen-dependent Salmonella killing, whereas S-nitrosoglutathione (GSNO) causes oxygen-independent cytostasis, and the NO. donor diethylenetriamine-nitric oxide adduct has no antibacterial activity. GSNO has the greatest activity for stationary cells, a characteristic relevant to latent or intracellular pathogens. Moreover, the cytostatic activity of GSNO may best correlate with antiproliferative or antimicrobial effects of NO, which are unassociated with overt cell injury. dpp mutants defective in active dipeptide transport are resistant to GSNO, implicating heterolytic NO+ transfer rather than homolytic NO. release in the mechanism of cytostasis. This transport system may provide a specific pathway for GSNO-mediated signaling in biological systems. The redox state and associated carrier molecules are critical determinants of NO activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dados mundiais apontam haver uma associação entre o aumento do comércio de vegetais minimamente processados prontos para o consumo (VPC) e o aumento da ocorrência de surtos de enfermidades transmitidas por alimentos. Durante o processamento industrial de VPC, a desinfecção é a principal etapa de inativação de micro-organismos patogênicos presentes, mas nessa etapa também pode ocorrer contaminação cruzada, com transferência de contaminantes de produtos contaminados para não-contaminados. Neste trabalho, foram coletadas informações sobre as práticas empregadas na etapa de desinfecção em dez importantes indústrias produtoras de VPC no Estado de São Paulo, avaliando-se, em seguida, a influência dessas práticas na qualidade microbiológica dos produtos e na inativação de Salmonella Typhimurium, bem como na ocorrência de contaminação cruzada por este patógeno. Um modelo de avaliação quantitativa de risco microbiológico foi elaborado para estimar o impacto da contaminação cruzada durante a etapa de desinfecção no risco de infecção por Salmonella devido ao consumo de VPC. Observou-se que, em todas as indústrias visitadas, a desinfecção dos vegetais era feita com produtos à base de cloro em concentrações de 50 a 240 mg/L, que resultava em redução de até 1,2 log na carga microbiana dos vegetais que entravam na linha de processamento. Ao avaliar a influência das características da água de processamento (pH, temperatura, concentração de matéria orgânica e concentração de dicloroisocianurato de sódio) e do tempo de contato entre a água clorada e os vegetais na redução de Salmonella, observou-se que a concentração do produto à base de cloro foi o parâmetro que apresentou maior influência (p<0.05). Concentrações de dicloroisocianurato de sódio acima de 10 mg/L foram necessárias para controle da contaminação cruzada durante a etapa de lavagem. O modelo de avaliação de risco construído indicou quantitativamente haver uma relação entre a concentração de dicloroisocianurato de sódio na água de desinfecção e o risco de ocorrência de surtos causados por Salmonella em VPC. Cenários simulando uso de dicloroisocianurato de sódio em concentrações abaixo de 5 mg/L indicaram que mais de 96% dos casos preditos de infecção por Salmonella poderiam ser atribuídos à ocorrência de contaminação cruzada, enquanto que em cenários com concentrações acima de 50 mg/L, casos de infecção devidos à contaminação cruzada não foram preditos. Estes resultados mostram que o controle da qualidade da água e o monitoramento da concentração de sanitizante na etapa de desinfecção são essenciais para evitar a ocorrência de contaminação cruzada e garantir a produção de VPC seguros para o consumo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La diarrea crónica de origen infeccioso en pacientes inmunocompetentes es un cuadro poco frecuente en países desarrollados, aunque ciertos patógenos, generalmente parásitos (Giardia lamblia, Isospora belli, Cryptosporidium, Cyclospora, Strongyloides, Ameba, Trichuris y Schistosoma) y algunas bacterias (Aeromonas, Plesiomonas, Campylobacter, Clostridium difficile, Salmonella o Mycobacterium tuberculosis) pueden ser causantes de diarrea persistente. Se presenta un caso de un paciente que presentó Salmonella typhimunium en el coprocultivo y se recuperó tras tratamiento con levofloxacino durante 7 días.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Salmonella Typhimurium (S. Typhimurium) is responsible for foodborne zoonotic infections that, in humans, induce self-limiting gastroenteritis. The aim of this study was to evaluate whether the wild-type strain S. Typhimurium (STM14028) is able to exploit inflammation fostering an active infection. Due to the similarity between human and porcine diseases induced by S. Typhimurium, we used piglets as a model for salmonellosis and gastrointestinal research. This study showed that STM14028 is able to efficiently colonize in vitro porcine mono-macrophages and intestinal columnar epithelial (IPEC-J2) cells, and that the colonization significantly increases with LPS pre-treatment. This increase was then reversed by inhibiting the LPS stimulation through LPS antagonist, confirming an active role of LPS stimulation in STM14028-intracellular colonization. Moreover, LPS in vivo treatment increased cytokines blood level and body temperature at 4 h post infection, which is consistent with an acute inflammatory stimulus, capable to influence the colonization of STM14028 in different organs and tissues. The present study proves for the first time that in acute enteric salmonellosis, S. Typhimurium exploits inflammation for its benefit in piglets.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Salmonella enterica is an important enteric pathogen and its various serovars are involved in causing both systemic and intestinal diseases in humans and domestic animals. The emergence of multidrug-resistant strains of Salmonella leading to increased morbidity and mortality has further complicated its management. Live attenuated vaccines have been proven superior over killed or subunit vaccines due to their ability to induce protective immunity. Of the various strategies used for the generation of live attenuated vaccine strains, focus has gradually shifted towards manipulation of virulence regulator genes. Hfq is a RNA chaperon which mediates the binding of small RNAs to the mRNA and assists in post-transcriptional gene regulation in bacteria. In this study, we evaluated the efficacy of the Salmonella Typhimurium Dhfq strain as a candidate for live oral vaccine in murine model of typhoid fever. Salmonella hfq deletion mutant is highly attenuated in cell culture and animal model implying a significant role of Hfq in bacterial virulence. Oral immunization with the Salmonella hfq deletion mutant efficiently protects mice against subsequent oral challenge with virulent strain of Salmonella Typhimurium. Moreover, protection was induced upon both multiple as well as single dose of immunizations. The vaccine strain appears to be safe for use in pregnant mice and the protection is mediated by the increase in the number of CD4(+) T lymphocytes upon vaccination. The levels of serum IgG and secretory-IgA in intestinal washes specific to lipopolysaccharide and outer membrane protein were significantly increased upon vaccination. Furthermore, hfq deletion mutant showed enhanced antigen presentation by dendritic cells compared to the wild type strain. Taken together, the studies in murine immunization model suggest that the Salmonella hfq deletion mutant can be a novel live oral vaccine candidate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Diaminopropionate ammonia lyase (DAPAL) is a pyridoxal-5'phosphate (PLP)-dependent enzyme that catalyzes the conversion of diaminopropionate (DAP) to pyruvate and ammonia and plays an important role in cell metabolism. We have investigated the role of the ygeX gene of Escherichia coli K-12 and its ortholog, STM1002, in Salmonella enterica serovar Typhimurium LT2, presumed to encode DAPAL, in the growth kinetics of the bacteria. While Salmonella Typhimurium LT2 could grow on DL-DAP as a sole carbon source, the wild-type E. coli K-12 strain exhibited only marginal growth on DL-DAP, suggesting that DAPAL is functional in S. Typhimurium. The expression of ygeX in E. coli was low as detected by reverse transcriptase PCR (RT-PCR), consistent with the poor growth of E. coli on DL-DAP. Strains of S. Typhimurium and E. coli with STM1002 and ygeX, respectively, deleted showed loss of growth on DL-DAP, confirming that STM1002 (ygeX) is the locus encoding DAPAL. Interestingly, the presence of DL-DAP caused a growth inhibition of the wild-type E. coli strain as well as the knockout strains of S. Typhimurium and E. coli in minimal glucose/glycerol medium. Inhibition by DL-DAP was rescued by transforming the strains with plasmids containing the STM1002 (ygeX) gene encoding DAPAL or supplementing the medium with Casamino Acids. Growth restoration studies using media lacking specific amino acid supplements suggested that growth inhibition by DL-DAP in the absence of DAPAL is associated with auxotrophy related to the inhibition of the enzymes involved in the biosynthetic pathways of pyruvate and aspartate and the amino acids derived from them.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background. Interferon gamma (IFN-gamma) increases the expression of multiple genes and responses; however, the mechanisms by which IFN-gamma downmodulates cellular responses is not well understood. In this study, the repression of CCL3 and CCL4 by IFN-gamma and nitric oxide synthase 2 (NOS2) in macrophages and upon Salmonella typhimurium infection of mice was investigated. Methods. Small molecule regulators and adherent peritoneal exudates cells (A-PECs) from Nos2(-/-)mice were used to identify the contribution of signaling molecules during IFN-gamma-mediated in vitro regulation of CCL3, CCL4, and CXCL10. In addition, infection of bone marrow-derived macrophages (BMDMs) and mice (C57BL/6, Ifn-gamma(-/), and Nos2(-/-)) with S. typhimurium were used to gain an understanding of the in vivo regulation of these chemokines. Results. IFN-gamma repressed CCL3 and CCL4 in a signal transducer and activator of transcription 1 (STAT1)-NOS2-p38 mitogen activated protein kinase (p38MAPK)-activating transcription factor 3 (ATF3) dependent pathway in A-PECs. Also, during intracellular replication of S. typhimurium in BMDMs, IFN-gamma and NOS2 repressed CCL3 and CCL4 production. The physiological roles of these observations were revealed during oral infection of mice with S. typhimurium, wherein endogenous IFN-gamma and NOS2 enhanced serum amounts of tumor necrosis factor alpha and CXCL10 but repressed CCL3 and CCL4. Conclusions. This study sheds novel mechanistic insight on the regulation of CCL3 and CCL4 in mouse macrophages and during S. typhimurium oral infection.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The role of lipopolysaccharide (LPS) in entry of Salmonella Typhimurium into epithelial cells remains unclear. In this study, we tested the ability of a series of mutants with deletions in genes for the synthesis and assembly of the O antigen and the outer core of LPS to adhere to and invade HeLa, BHK, and IB3 epithelial cells lines. Mutants devoid of O antigen, or that synthesized only one O antigen unit, or with altered O antigen chain lengths were as able as the wild type to enter epithelial cells, indicating that this polysaccharide is not required for invasion of epithelial cells in vitro. In contrast, the LPS core plays a role in the interaction of S. Typhimurium with epithelial cells. The minimal core structure required for adherence and invasion comprised the inner core and residues Glc I Gal I of the outer core. A mutant of S. Typhimurium that produced a truncated LPS core lacking the terminal galactose residue had a significant lower level of adherence to and ingestion by the three epithelial cell lines than did strains with this characteristic. Complementation of the LPS production defect recovered invasion to parental levels. Heat-killed bacteria with a core composed of Glc 1 Gal I. but not bacteria with a core composed of Glc 1, inhibited uptake of the wild type by HeLa cells. A comparison of the chemical structure of the S. Typhi core with the published chemical structure of that of S. Typhimurium indicated that the Glc I Gal 1 Glc 11 backbone is conserved in both serovars. However, S. Typhi requires a terminal glucose for maximal invasion. Therefore, our data indicate that critical saccharide residues of the outer core play different roles in the early interactions of serovars Typhi and Typhimurium with epithelial cells. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Bacteria employ complex transcriptional networks involving multiple genes in response to stress, which is not limited to gene and protein networks but now includes small RNAs (sRNAs). These regulatory RNA molecules are increasingly shown to be able to initiate regulatory cascades and modulate the expression of multiple genes that are involved in or required for survival under environmental challenge. Despite mounting evidence for the importance of sRNAs in stress response, their role upon antibiotic exposure remains unknown. In this study, we sought to determine firstly, whether differential expression of sRNAs occurs upon antibiotic exposure and secondly, whether these sRNAs could be attributed to microbial tolerance to antibiotics.

Results: A small scale sRNA cloning strategy of Salmonella enterica serovar Typhimurium SL1344 challenged with half the minimal inhibitory concentration of tigecycline identified four sRNAs (sYJ5, sYJ20, sYJ75 and sYJ118) which were reproducibly upregulated in the presence of either tigecycline or tetracycline. The coding sequences of the four sRNAs were found to be conserved across a number of species. Genome analysis found that sYJ5 and sYJ118 mapped between the 16S and 23S rRNA encoding genes. sYJ20 (also known as SroA) is encoded upstream of the tbpAyabKyabJ operon and is classed as a riboswitch, whilst its role in antibiotic stress-response appears independent of its riboswitch function. sYJ75 is encoded between genes that are involved in enterobactin transport and metabolism. Additionally we find that the genetic deletion of sYJ20 rendered a reduced viability phenotype in the presence of tigecycline, which was recovered when complemented. The upregulation of some of these sRNAs were also observed when S. Typhimurium was challenged by ampicillin (sYJ5, 75 and 118); or when Klebsiella pneumoniae was challenged by tigecycline (sYJ20 and 118).

Conclusions: Small RNAs are overexpressed as a result of antibiotic exposure in S. Typhimurium where the same molecules are upregulated in a related species or after exposure to different antibiotics. sYJ20, a riboswitch, appears to possess a trans-regulatory sRNA role in antibiotic tolerance. These findings imply that the sRNA mediated response is a component of the bacterial response to antibiotic challenge.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ability of the standard pre-enrichment procedure in buffered peptone water (BPW) to recover Salmonella Typhimurium from acidic marinade sauces containing spices was tested by inoculating marinade sauces with known numbers of an antibiotic-resistant marker strain of Salmonella Typhimurium DT104 prior to pre-enrichment. Viable numbers of salmonellae present in BPW after 24h incubation depended on the inoculum level. If initial cell numbers were low (below 103 cfu per 250 ml BPW) final cell concentrations were also low and, in some cases, no growth occurred. The problem was overcome by use of double-strength BPW that neutralised the acidity and allowed good recovery from otherwise inhibitory marinade sauces.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Multiply antibiotic-resistant (MAR) mutants of Escherichia coli and Salmonella enterica are characterized by reduced susceptibility to several unrelated antibiotics, biocides and other xenobiotics. Porin loss and/or active efflux have been identified as a key mechanisms of MAR. A single rapid test was developed for MAR. The intracellular accumulation of the fluorescent probe Hoechst (H) 33342 (bisbenzimide) by MAR mutants and those with defined disruptions in efflux pump and porin genes was determined in 96-well plate format. The accumulation of H33342 was significantly (P < 0.0001) reduced in MAR mutants of S. enterica serovar Typhimurium (n = 4) and E. coli (n = 3) by 41 +/- 8% and 17.3 +/- 7.2%, respectively, compared with their parental strains, which was reversed by the transmembrane proton gradient-collapsing agent carbonyl cyanide-m-chlorophenyl hydrazone (CCCP) and the efflux pump inhibitor phenylalanine-arginine-beta-naphthylamide (PA beta N). The accumulation of H33342 was significantly reduced in mutants of Salmonella Typhimurium with defined disruptions in genes encoding the porins OmpC, OmpF, OmpX and OmpW, but increased in those with disruptions in efflux pump components TolC, AcrB and AcrF. Reduced accumulation of H33342 in three other MAR mutants of Salmonella Typhimurium correlated with the expression of porin and efflux pump proteins. The intracellular accumulation of H33342 provided a sensitive and specific test for MAR that is cheap and relatively rapid. Differential sensitivity to CCCP and PA beta N provided a further means to phenotypically identify MAR mutants and the role of active efflux in each strain.