1000 resultados para SPIN-LABEL


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cationic lipids-DNA complexes (lipoplexes) have been used for delivery of nucleic acids into cells in vitro and in vivo. Despite the fact that, over the last decade, significant progress in the understanding of the cellular pathways and mechanisms involved in lipoplexes-mediated gene transfection have been achieved, a convincing relationship between the structure of lipoplexes and their in vivo and in vitro transfection activity is still missing. How does DNA affect the lipid packing and what are the consequences for transfection efficiency is the point we want to address here. We investigated the bilayer organization in cationic liposomes by electron spin resonance (ESR). Phospholipids spin labeled at the 5th and 16th carbon atoms were incorporated into the DNA/diC14-amidine complex. Our data demonstrate that electrostatic interactions involved in the formation of DNA-cationic lipid complex modify the packing of the cationic lipid membrane. DNA rigidifies the amidine fluid bilayer and fluidizes the amidine rigid bilayer just below the gel-fluid transition temperature. These effects were not observed with single nucleotides and are clearly related to the repetitive charged motif present in the DNA chain and not to a charge-charge interaction. These modifications of the initial lipid packing of the cationic lipid may reorient its cellular pathway towards different routes. A better knowledge of the cationic lipid packing before and after interaction with DNA may therefore contribute to the design of lipoplexes capable to reach specific cellular targets. (c) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The various stages of the interaction between the detergent Triton X-100 (TTX-100) and membranes of whole red blood cells (RBC) were investigated in a broad range of detergent concentrations. The interaction was monitored by RBC hemolysis-assessed by release of intracellular hemoglobin (Hb) and inorganic phosphate- and by analysis of EPR spectra of a fatty acid spin probe intercalated in whole RBC suspensions, as well as pellets and supernatants obtained upon centrifugation of detergent-treated cells. Hemolysis finished at ca. 0.9 mM TTX-100. Spectral analysis and calculation of order parameters (S) indicated that a complex sequence of events takes place, and allowed the characterization of various structures formed in the different stages of detergent-membrane interaction. Upon reaching the end of cell lysis, essentially no pellet was detected, the remaining EPR signal being found almost entirely in the supernatants. Calculated order parameters revealed that whole RBC suspensions, pellets, and supernatants possessed a similar degree of molecular packing, which decreased to a small extent up to 2.5 mM detergent. Between 3.2 and 10 mM TTX-100, a steep decrease in S was observed for both whole RBC suspensions and supernatants. Above 10 mM detergent, S decreased in a less pronounced manner and the EPR spectra approached that of pure TTX-100 micelles. The data were interpreted in terms of the following events: at the lower detergent concentrations, an increase in membrane permeability occurs: the end of hemolysis coincides with the lack of pellet upon centrifugation. Up to 2.5 mM TTX-100 the supernatants consist of a (very likely) heterogeneous population of membrane fragments with molecular packing similar to that of whole cells. As the detergent concentration increases, mixed micelles are formed containing lipid and/or protein, approaching the packing found in pure TTX-100 micelles. This analysis is in agreement with the models proposed by Lasch (Biochim. Biophys Acta 1241 (1995) 269-292) and by Le Maire and coworkers (Biochim. Biophys. Acta 1508 (2000) 86-111). (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ESR spectra of spin probes were used to monitor lipid-protein interactions in native and cholesterol-enriched microsomal membranes. In both systems composite spectra were obtained, one characteristic of bulk bilayer organization and another due to a motionally restricted population, which was ascribed to lipids in a protein microenvironment. Computer spectral subtractions revealed that cholesterol modulates the order/mobility of both populations in opposite ways, i.e., while the lipid bilayer region gives rise to more anisotropic spectra upon cholesterol enrichment, the spectra of the motionally restricted population become indicative of increased mobility and/or decreased order. These events were evidenced by measurement of both effective order parameters and correlation times. The percentages of the motionally restricted component were invariant in native and cholesterol-enriched microsomes. Variable temperature studies also indicated a lack of variation of the percentages of both spectral components, suggesting that the motionally restricted one was not due to protein aggregation. The results correlate well with the effect of cholesterol enrichment on membrane-bound enzyme kinetics and on the behavior of fluorescent probes [Castuma & Brenner (1986) Biochemistry 25, 4733-4738]. Several hypothesis are put forward to explain the molecular mechanism of the cholesterol-induced spectral changes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An EPR approach to monitor peptide chain aggregation inside resin beads is introduced. Model low and highly peptide-loaded resins containing an aggregating sequence were labeled with a paramagnetic amino acid derivative and studied with regard to their solvation behavior in different solvent systems. For the first time in the peptide synthesis, EPR spectroscopic has allowed the detection of differentiated levels of peptide chain aggregation as a function of solvent and resin loading. (C) 1997, Elsevier B.V. Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The EPR spectra of spin-labeled lipid chains in fully hydrated bilayer membranes of dimyristoyl phosphatidylcholine containing 40 mol % of cholesterol have been studied in the liquid-ordered phase at a microwave radiation frequency of 94 GHz. At such high field strengths, the spectra should be optimally sensitive to lateral chain ordering that is expected in the formation of in-plane domains. The high-field EPR spectra from random dispersions of the cholesterol-containing membranes display very little axial averaging of the nitroxide g-tensor anisotropy for lipids spin labeled toward the carboxyl end of the sn-2 chain (down to the 8-C atom). For these positions of labeling, anisotropic 14N-hyperfine splittings are resolved in the gzz and gyy regions of the nonaxial EPR spectra. For positions of labeling further down the lipid chain, toward the terminal methyl group, the axial averaging of the spectral features systematically increases and is complete at the 14-C atom position. Concomitantly, the time-averaged 〈Azz〉 element of the 14N-hyperfine tensor decreases, indicating that the axial rotation at the terminal methyl end of the chains arises from correlated torsional motions about the bonds of the chain backbone, the dynamics of which also give rise to a differential line broadening of the 14N-hyperfine manifolds in the gzz region of the spectrum. These results provide an indication of the way in which lateral ordering of lipid chains in membranes is induced by cholesterol.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Dioctadecyldimethylammonium bromide (DODAB) dispersions obtained by simply mixing the amphiphile in water, and by bath-sonication, were investigated by electron spin resonance (ESR) of stearic acids and their methyl ester derivatives, labeled at the 5th and 16th carbons of the acyl chain. The ESR spectra indicate that the non-sonicated dispersions are formed mainly by one population of DODAB vesicles, either in the gel (T < T-m) or in the liquid-crystalline (T > T-m) state. Around T-m there is a co-existence of the two phases, with a thermal hysteresis of about 3.2 degreesC. In sonicated DODAB dispersions, spin labels indicate two different environments even for temperatures far below T-m: one similar to that obtained with non-sonicated samples, a gel phase, and another one in the liquid-crystalline state. The fluid phase domain present below T-m could correspond to either the periphery of bilayer fragments, reported to be present in sonicated DODAB dispersions, or to high curvature vesicles. (C) 2001 Elsevier B.V. Ireland Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Resin solvation properties affect the efficiency of the coupling reactions in solid-phase peptide synthesis. Here we report a novel approach to evaluate resin solvation properties, making use of spin label electron paramagnetic resonance (EPR) spectroscopy. The aggregating VVLGAAIV and ING sequences were assembled in benzhydrylamine-resin with different amino group contents (up to 2.6 mmol/g) to examine the extent of chain association within the beads. These model peptidyl-resins were first labeled at their N-terminus with the amino acid spin label 2,2,6,6-tetramethylpiperidine-N-oxyl-4-amino-4-carboxylic acid (Toac). Their solvation properties in different solvents were estimated, either by bead swelling measurement or by assessing the dynamics of their polymeric matrixes through the analysis of Toac EPR spectra, and were correlated with the yield of the acylation reaction. In most cases the coupling rate was found to depend on bead swelling. Comparatively, the EPR approach was more effective. Line shape analysis allowed the detection of more than one peptide chain population, which influenced the reaction. The results demonstrated the unique potential of EPR spectroscopy not only for improving the yield of peptide synthesis, even in challenging conditions, but also for other relevant polymer-supported methodologies in chemistry and biology.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The stable free radical 2,2,6,6-tetramethylpiperidine-N-oxyl-4-amino-4-carboxylic acid (TOAC) is the only spin labeled amino acid that has been used to date to successfully label peptide sequences for structural studies. However, severe difficulty in coupling the subsequent amino acid has been the most serious shortcoming of this paramagnetic marker. This problem stems from the low nucleophilicity of TOAC's amine group towards the acylation reaction during peptide chain elongation. The present report introduces the alternative beta -amino acid 2,2,5,5-tetramethylpyrrolidine-N-oxyl-3-amino-4-carboxylic acid (POAC), potentially useful in peptide and protein chemistry. Investigations aimed at addressing the stereochemistry of this cyclic molecule through X-ray diffraction measurements of crystalline and bulk samples revealed that it consists only of the trans conformer. The 9-fluorenylmethyloxyearbonyl group (Fmoc) was chosen for temporary protection of the POAC amine function, allowing insertion of the probe at any position in a peptide sequence. The vasoactive octapeptide angiotensin II (AII, DRVYIHPF) was synthesized by replacing Pro(7) with POAC. The reaction of Fmoc-POAC with the peptidyl-resin occurred smoothly, and the coupling of the subsequent amino acid showed a much faster reaction when compared with TOAC. POAC(7)-AII was obtained in good yield, demonstrating that, in addition to TOAC, POAC is a convenient amino acid for the synthesis of spin labeled peptide analogues. The present findings open the possibility of a wide range of chemical and biological applications for this novel beta -amino acid derivative, including structural investigations involving its differentiated bend-inducing characteristics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Site-directed chemical cleavage of lactose permease indicates that helix V is in close proximity to helices VII and VIII. To test this conclusion further, permease containing a biotin-acceptor domain and paired Cys residues at positions 148 (helix V) and 228 (helix VII), 148 and 226 (helix VII), or 148 and 275 (helix VIII) was affinity purified and labeled with a sulfhydryl-specific nitroxide spin label. Spin-spin interactions are observed with the 148/228 and 148/275 pairs, indicating close proximity between appropriate faces of helix V and helices VII and VIII. Little or no interaction is evident with the 148/226 pair, in all likelihood because position 226 is on the opposite face of helix VII from position 228. Broadening of the electron paramagnetic resonance spectra in the frozen state was used to estimate distance between the 148/228 and the 148/275 pairs. The nitroxides at positions 148 and 228 or 148 and 275 are within approximately 13-15 A. Finally, Cys residues at positions 148 and 228 are crosslinked by dibromobimane, a bifunctional crosslinker that is approximately 5 A. long, while no crosslinking is detected between Cys residues at positions 148 and 275 or 148 and 226. The results provide strong support for a structure in which helix V is in close proximity to both helices VII and VIII and is oriented in such a fashion that Cys-148 is closer to helix VII.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The use of molecular genetics to introduce both a metal ion binding site and a nitroxide spin label into the same protein opens the use of paramagnetic metalnitroxyl interactions to estimate intramolecular distances in a wide variety of proteins. In this report, a His-Xaa3-His metal ion binding motif was introduced at the N terminus of the long interdomain helix of T4 lysozyme (Lys-65 --> His/Gln-69 --> His) of three mutants, each containing a single nitroxide-labeled cysteine residue at position 71, 76, or 80. The results show that Cu(II)-induced relaxation effects on the nitroxide can be quantitatively analyzed in terms of interspin distance in the range of 10-25 A using Redfield theory, as first suggested by Leigh [Leigh, J.S. (1970) J. Chem. Phys. 52, 2608-2612]. Of particular interest is the observation that distances can be determined both under rigid lattice conditions in frozen solution and in the presence of motion of the spins at room temperature under physiological conditions. The method should be particularly attractive for investigating structure in membrane proteins that are difficult to crystallize. In the accompanying paper, the technique is applied to a polytopic membrane protein, lactose permease.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

SecB is a homotetrameric cytosolic chaperone that forms part of the protein translocation machinery in E. coli. Due to SecB, nascent polypeptides are maintained in an unfolded translocation-competent state devoid of tertiary structure and thus are guided to the translocon. In vitro SecB rapidly binds to a variety of ligands in a non-native state. We have previously investigated the bound state conformation of the model substrate bovine pancreatic trypsin inhibitor (BPTI) as well as the conformation of SecB itself by using proximity relationships based on site-directed spin labeling and pyrene fluorescence methods. It was shown that SecB undergoes a conformational change during the process of substrate binding. Here, we generated SecB mutants containing but a single cysteine per subunit or an exposed highly reactive new cysteine after removal of the nearby intrinsic cysteines. Quantitative spin labeling was achieved with the methanethiosulfonate spin label (MTS) at positions C97 or E90C, respectively. Highfield (W-band) electron paramagnetic resonance (EPR) measurements revealed that with BPTI present the spin labels are exposed to a more polar/hydrophilic environment. Nanoscale distance measurements with double electron-electron resonance (DEER) were in excellent agreement with distances obtained by molecular modeling. Binding of BPTI also led to a slight change in distances between labels at C97 but not at E90C. While the shorter distance in the tetramer increased, the larger diagonal distance decreased. These findings can be explained by a widening of the tetrameric structure upon substrate binding much like the opening of two pairs of scissors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Seven double cysteine mutants of maltose binding protein (MBP) were generated with one each in the active cleft at position 298 and the second cysteine distributed over both domains of the protein. These cysteines were spin labeled and distances between the labels in biradical pairs determined by pulsed double electron-electron resonance (DEER) measurements. The values were compared with theoretical predictions of distances between the labels in biradicals constructed by molecular modeling from the crystal structure of MBP without maltose and were found to be in excellent agreement. MBP is in a molten globule state at pH 3.3 and is known to still bind its substrate maltose. The nitroxide spin label was sufficiently stable under these conditions. In preliminary experiments, DEER measurements were carried out with one of the mutants yielding a broad distance distribution as was to be expected if there is no explicit tertiary structure and the individual helices pointing into all possible directions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Amphotericin B (AmB) is widely used in the treatment of systemic fungal infections, despite its toxic effects. Nephrotoxicity, ascribed as the most serious toxic effect, has been related to the state of aggregation of the antibiotic. In search of the increase in AmB antifungal activity associated with low toxicity, several AmB-amphiphile formulations have been proposed. This work focuses on the structural characterization of a specific AmB formulation: AmB associated with sonicated dioctadecyl dimethylammonium bromide (DODAB) aggregates. Here, it was confirmed that sonicated DODAB dispersion is constituted by DODAB bicelles, and that monomeric AmB is much more soluble in bicelles than in DODAB vesicles. A new optical parameter is proposed for the estimation of the relative amount of amphiphile-bound monomeric AmB. With theoretical simulations of the spectra of spin labels incorporated in DODAB bicelles it was possible to prove that monomeric AmB binds preferentially to lipids located at the edges of DODAB bicelles, rigidifying them, and decreasing the polarity of the region. That special binding of monomeric AmB along the borders of bicelles, where the lipids are highly disorganized, could be used in the formulation of other carriers for the antibiotic, including mixtures of natural lipids which are known to form bicelles. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The use of liposomes to encapsulate materials has received widespread attention for drug delivery, transfection, diagnostic reagent, and as immunoadjuvants. Phospholipid polymers form a new class of biomaterials with many potential applications in medicine and research. Of interest are polymeric phospholipids containing a diacetylene moiety along their acyl chain since these kinds of lipids can be polymerized by Ultra-Violet (UV) irradiation to form chains of covalently linked lipids in the bilayer. In particular the diacetylenic phosphatidylcholine 1,2-bis(10,12-tricosadiynoyl)- sn-glycero-3-phosphocholine (DC8,9PC) can form intermolecular cross-linking through the diacetylenic group to produce a conjugated polymer within the hydrocarbon region of the bilayer. As knowledge of liposome structures is certainly fundamental for system design improvement for new and better applications, this work focuses on the structural properties of polymerized DC8,9PC:1,2-dimyristoyl-sn-glycero-3-phusphocholine (DMPC) liposomes. Liposomes containing mixtures of DC8,9PC and DMPC, at different molar ratios, and exposed to different polymerization cycles, were studied through the analysis of the electron spin resonance (ESR) spectra of a spin label incorporated into the bilayer, and the calorimetric data obtained from differential scanning calorimetry (DSC) studies. Upon irradiation, if all lipids had been polymerized, no gel-fluid transition would be expected. However, even samples that went through 20 cycles of UV irradiation presented a DSC band, showing that around 80% of the DC8,9PC molecules were not polymerized. Both DSC and ESR indicated that the two different lipids scarcely mix at low temperatures, however few molecules of DMPC are present in DC8,9PC rich domains and vice versa. UV irradiation was found to affect the gel fluid transition of both DMPC and DC8,9PC rich regions, indicating the presence of polymeric units of DC8,9PC in both areas, A model explaining lipids rearrangement is proposed for this partially polymerized system.