994 resultados para Rolling circle amplification


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The hepatitis delta virus (HDV) ribozyme is a self-cleaving RNA enzyme essential for processing viral transcripts during rolling circle viral replication. The first crystal structure of the cleaved ribozyme was solved in 1998, followed by structures of uncleaved, mutant-inhibited and ion-complexed forms. Recently, methods have been developed that make the task of modeling RNA structure and dynamics significantly easier and more reliable. We have used ERRASER and PHENIX to rebuild and re-refine the cleaved and cis-acting C75U-inhibited structures of the HDV ribozyme. The results correct local conformations and identify alternates for RNA residues, many in functionally important regions, leading to improved R values and model validation statistics for both structures. We compare the rebuilt structures to a higher resolution, trans-acting deoxy-inhibited structure of the ribozyme, and conclude that although both inhibited structures are consistent with the currently accepted hammerhead-like mechanism of cleavage, they do not add direct structural evidence to the biochemical and modeling data. However, the rebuilt structures (PDBs: 4PR6, 4PRF) provide a more robust starting point for research on the dynamics and catalytic mechanism of the HDV ribozyme and demonstrate the power of new techniques to make significant improvements in RNA structures that impact biologically relevant conclusions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hepatitis δ virus (HDV) replicates its circular RNA genome via a rolling circle mechanism. During this process, cis-acting ribozymes cleave adjacent upstream sequences and thereby resolve replication intermediates to unit-length RNA. The subsequent ligation of these 5′OH and 2′,3′-cyclic phosphate termini to form circular RNA is an essential step in the life cycle of the virus. Here we present evidence for the involvement of a host activity in the ligation of HDV RNA. We used both HDV and hammerhead ribozymes to generate a panel of HDV and non-HDV RNA substrates that bear 5′ hydroxyl and 2′,3′- cyclic phosphate termini. We found that ligation of these substrates occurred in host cells, but not in vitro or in Escherichia coli. The host-specific ligation activity was capable of joining RNA in both bimolecular and intramolecular reactions and functioned in a sequence-independent manner. We conclude that mammalian cells contain a default pathway that efficiently circularizes ribozyme processed RNAs. This pathway could be exploited in the delivery of stable antisense and decoy RNA to the nucleus.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Transfection of the human malaria parasite Plasmodium falciparum is currently performed with circularised plasmids that are maintained episomally in parasites under drug selection but which are rapidly lost when selection pressure is removed. In this paper, we show that in instances where gene targeting is not favoured, transfected plasmids can change to stably replicating forms (SRFs) that are maintained episomally in the absence of drug selection. SRF DNA is a large concatamer of the parental plasmid comprising at least nine plasmids arranged in a head-to-tail array. We show as well that the original unstable replicating forms (URFs) are also present as head-to-tail concatamers, but only comprise three plasmids. Limited digestion and γ irradiation experiments revealed that while URF concatamers are primarily circular, as expected, SRF concatamers form a more complex structure that includes extensive single-stranded DNA. No evidence of sequence rearrangement or additional sequence was detected in SRF DNA, including in transient replication experiments designed to select for more efficiently replicating plasmids. Surprisingly, these experiments revealed that the bacterial plasmid alone can replicate in parasites. Together, these results imply that transfected plasmids are required to form head-to-tail concatamers to be maintained in parasites and implicate both rolling-circle and recombination-dependent mechanisms in their replication.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The RecBCD enzyme of Escherichia coli promotes recombination preferentially at chi nucleotide sequences and has in vivo helicase and strong duplex DNA exonuclease (exoV) activities. The enzyme without the RecD subunit, as in a recD null mutant, promotes recombination efficiently but independently of chi and has no nucleolytic activity. Employing phage lambda red gam crosses, phage T4 2- survival measurements, and exoV assays, it is shown that E. coli cells in which RecBCD has extensive opportunity to interact with linear chi-containing DNA (produced by rolling circle replication of a plasmid with chi or by bleomycin-induced fragmentation of the cellular chromosome) acquire the phenotype of a recD mutant and maintain this for approximately 2 h. It is concluded that RecBCD is converted into RecBC during interaction with chi by irreversible inactivation of RecD. After conversion, the enzyme is released and initiates recombination on other DNA molecules in a chi-independent fashion. Overexpression of recD+ (from a plasmid) prevented the phenotypic change and providing RecD after the change restored chi-stimulated recombination. The observed recA+ dependence of the downregulation of exoV could explain the previously noted "reckless" DNA degradation of recA mutants. It is proposed that chi sites are regulatory elements for the RecBCD to RecBC switch and thereby function as cis- and trans-acting stimulators of RecBC-dependent recombination.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Replication of the single-stranded DNA genome of geminiviruses occurs via a double-stranded intermediate that is subsequently used as a template for rolling-circle replication of the viral strand. Only one of the proteins encoded by the virus, here referred to as replication initiator protein (Rep protein), is indispensable for replication. We show that the Rep protein of tomato yellow leaf curl virus initiates viral-strand DNA synthesis by introducing a nick in the plus strand within the nonanucleotide 1TAATATT decreases 8AC, identical among all geminiviruses. After cleavage, the Rep protein remains bound to the 5' end of the cleaved strand. In addition, we show that the Rep protein has a joining activity, suggesting that it acts as a terminase, thus resolving the nascent viral single strand into genome-sized units.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present work describes the molecular characterization of five circular plasmids found in the human clinical strain Lactococcus garvieae 21881. The plasmids were designated pGL1-pGL5, with molecular sizes of 4,536 bp, 4,572 bp, 12,948 bp, 14,006 bp and 68,798 bp, respectively. Based on detailed sequence analysis, some of these plasmids appear to be mosaics composed of DNA obtained by modular exchange between different species of lactic acid bacteria. Based on sequence data and the derived presence of certain genes and proteins, the plasmid pGL2 appears to replicate via a rolling-circle mechanism, while the other four plasmids appear to belong to the group of lactococcal theta-type replicons. The plasmids pGL1, pGL2 and pGL5 encode putative proteins related with bacteriocin synthesis and bacteriocin secretion and immunity. The plasmid pGL5 harbors genes (txn, orf5 and orf25) encoding proteins that could be considered putative virulence factors. The gene txn encodes a protein with an enzymatic domain corresponding to the family actin-ADP-ribosyltransferases toxins, which are known to play a key role in pathogenesis of a variety of bacterial pathogens. The genes orf5 and orf25 encode two putative surface proteins containing the cell wall-sorting motif LPXTG, with mucin-binding and collagen-binding protein domains, respectively. These proteins could be involved in the adherence of L. garvieae to mucus from the intestine, facilitating further interaction with intestinal epithelial cells and to collagenous tissues such as the collagen-rich heart valves. To our knowledge, this is the first report on the characterization of plasmids in a human clinical strain of this pathogen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fleck and Johnson (Int. J. Mech. Sci. 29 (1987) 507) and Fleck et al. (Proc. Inst. Mech. Eng. 206 (1992) 119) have developed foil rolling models which allow for large deformations in the roll profile, including the possibility that the rolls flatten completely. However, these models require computationally expensive iterative solution techniques. A new approach to the approximate solution of the Fleck et al. (1992) Influence Function Model has been developed using both analytic and approximation techniques. The numerical difficulties arising from solving an integral equation in the flattened region have been reduced by applying an Inverse Hilbert Transform to get an analytic expression for the pressure. The method described in this paper is applicable to cases where there is or there is not a flat region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper explores a new interpretation of experiments on foil rolling. The assumption that the roll remains convex is relaxed so that the strip profile may become concave, or thicken in the roll gap. However, we conjecture that the concave profile is associated with phenomena which occur after the rolls have stopped. We argue that the yield criterion must be satisfied in a nonconventional manner if such a phenomenon is caused plastically. Finite element analysis on an extrusion problem appears to confirm this conjecture.