994 resultados para Roasting (Metallurgy)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The supersulfated cement (CSS) basically consist of up to 90% blast furnace slag, 10-20% of a source of calcium sulfate and a small amount of alkali activator, covered by European standard EN 15743/2010. Because of this SSC are considered "green cement" low environmental impact. The source of calcium sulfate used in the preparation of CSS can be obtained from natural sources, such as gypsum or from alternative sources (industrial products), such as phosphogypsum. The phosphogypsum is a by-product of the fertilizer industry, used in the production of phosphoric acid. In this process the phosphate rock is treated with sulfuric acid to give as the major product phosphoric acid (H3PO4), gypsum and a small amount of hydrofluoric acid. The chemical composition of gypsum is basically calcium sulfate dihydrate (CaSO4.2H2O), similar to gypsum, because it can be used in this type of cement. To become anhydrous, the calcination of gypsum is necessary. The availability of the source of calcium sulfate to react with the slag is dependent on its solubility that is directly related to its calcination temperature. The solubility of the anhydrous gypsum decreases with increasing calcination temperature. This study investigated the influence of temperature of calcination of phosphogypsum on the performance of CSS. Samples were prepared with 10 and 20% of phosphogypsum calcinated at 350 to 650 ° C using KOH as an alkaline activator at three different concentrations (0.2, 0.5 and 0.8%). The results showed that all mortars presented the minimum values required by EN 15743/2010 for 7 and 28 days of hydration. In general CSS containing 10% phosphogypsum showed slightly better compressive strength results using a lower calcination temperature (350 °C) and curing all ages. The CSS containing 20% of calcined gypsum at 650 °C exhibit satisfactory compressive strenght at 28 days of hydration, but at later ages (56 to 90 days) it strongly reduced. This indicates that the calcination temperature of phosphogypsum has a strong influence on the performance of the CSS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermodynamic analysis of a non-polluting process for the effective treatment of lean multimetallic sulphide ores is presented. The sulphide ore is roasted with sodium chloride in air. Metal sulphides are converted to chlorides that can be separated from the unaffected gangue material. At a temperature of 1100 K the chlorides are present both in gaseous and in condensed states. Volatile chlorides can be easily removed and subsequently condensed. The chlorides present in the condensed state can be leached to separate them from the gangue. The sulphur is trapped as Na2SO4 and thus SO2 emission is minimized. Ellingham diagrams are used to compare data for a large number of elements. The major thermodynamic driving force is provided by the higher stability of Na2SO4 relative to NaCl.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sulphide ores of copper are insoluble in dilute sulphuric acid leaching solutions, but a very high extraction can be obtained if the copper ore is in the oxidized condition. The problem is to convert the sulphide into the oxide form. This can be done by giving the sulphide ore an oxidizing-sulphatizing roast. Copper sulphate is soluble in water, so acid will be saved in the leaching process if copper sulphate is present. The iron in the copper sulphide ores is present as pyrite, or in combinations as bornite, or chalcopyrite.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this research was to investigate the possibilities of roasting and leaching a bulk copper-zinc sulfide concentrate, and the subsequent separation of the metals from the leach solution by electro­lytic deposition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The United States, although the leading consumer of chromite, depends almost entirely on imports for its supply. Domestic production of chromite is limited, because high-grade imported ore is plentiful and inexpensive in normal times. There are several large deposits of chromite in the United States, representing millions of tons of low grade ore. These deposits form a strategic reserve that must be used in time of national emergency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

At present copper sulfide ores are recovered by pyrometallurgical processes. While the recovery of cop­per from sulfide ores by hydrometallurgical means has long been considered attractive, the impurities, low re­covery and mechanical difficulties have kept this process from becoming commercial.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The possible benefits of oxygen enriched atmosphere roasting have been known to metallurgists for many years, but only since the development of equipment and processes to produce cheap oxygen in very large amounts has much ser­ious consideration been given this matter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated Nrf2-activating properties of a coffee blend combining raw coffee bean constituents with 5-O-caffeoylquinic acid (CGA) as a lead component with typical roasting products such as N-methylpyridinium (NMP). In cell culture (HT29) the respective coffee extract (CN-CE) increased nuclear Nrf2 translocation and enhanced the transcription of ARE-dependent genes as exemplified for NAD(P)H:quinone oxidoreductase and glutathione-S-transferase (GST)A1, reflected in the protein level by an increase in GST enzyme activity. In a pilot human intervention study (29 healthy volunteers), daily consumption of 750 mL of CN-coffee for 4 weeks increased Nrf2 transcription in peripheral blood lymphocytes on average. However, the transcriptional response pattern of Nrf2/ARE-dependent genes showed substantial interindividual variations. The presence of SNPs in the Nrf2-promoter, reported recently, as well as the detection of GSTT1*0 (null) genotypes in the study collective strengthens the hypothesis that coffee acts as a modulator of Nrf2-dependent gene response in humans, but genetic polymorphisms play an important role in the individual response pattern.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The medieval icons of southern India are among the most acclaimed Indian artistic innovations, especially those of the Chola Tamil kingdom (9th–10th centuries), which is best known for the Hindu iconography of the Dance of Siva that captured the imagination of master sculptor Rodin.1 Apart from these prolific images, however, not much was known about southern Indian copperbased metallurgy. Hence, these often spectacular castings have been regarded as a sudden efflorescence, almost without precedent, of skilled metallurgy as contrasted with tin-rich China or southeast Asia, for instance, where a developed copper-bronze tradition has been better appreciated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hot-working characteristics of the metal-matrix composite (MMC) Al-10 vol % SiC-particulate (SiCp) powder metallurgy compacts in as-sintered and in hot-extruded conditions were studied using hot compression testing. On the basis of the stress-strain data as a function of temperature and strain rate, processing maps depicting the variation in the efficiency of power dissipation, given by eegr = 2m/(m+1), where m is the strain rate sensitivity of flow stress, have been established and are interpreted on the basis of the dynamic materials model. The as-sintered MMC exhibited a domain of dynamic recrystallization (DRX) with a peak efficiency of about 30% at a temperature of about 500°C and a strain rate of 0.01 s�1. At temperatures below 350°C and in the strain rate range 0.001�0.01 s�1 the MMC exhibited dynamic recovery. The as-sintered MMC was extruded at 500°C using a ram speed of 3 mm s�1 and an extrusion ratio of 10ratio1. A processing map was established on the extruded product, and this map showed that the DRX domain had shifted to lower temperature (450°C) and higher strain rate (1 s�1). The optimum temperature and strain rate combination for powder metallurgy billet conditioning are 500°C and 0.01 s�1, and the secondary metal-working on the extruded product may be done at a higher strain rate of 1 s�1 and a lower temperature of 425°C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hot deformation behavior of hot isostatically pressed (HIP) NIMONIC AP-1 superalloy is characterized using processing maps in the temperature range 950-degrees-C to 1200-degrees-C and strain rate range 0.001 to 100 s-1. The dynamic materials model has been used for developing the processing maps which show the variation of the efficiency of power dissipation given by [2m/(m +1)] with temperature and strain rate, with m being the strain rate sensitivity of flow stress. The processing map revealed a domain of dynamic recrystallization with a peak efficiency of 40 pct at 1125-degrees-C and 0.3 s-1, and these are the optimum parameters for hot working. The microstructure developed under these conditions is free from prior particle boundary (PPB) defects, cracks, or localized shear bands. At 100 s-1 and 1200-degrees-C, the material exhibits inter-crystalline cracking, while at 0.001 s-1, the material shows wedge cracks at 1200-degrees-C and PPB cracking at 1000-degrees-C. Also at strain rates higher than 10 s-1, adiabatic shear bands occur; the limiting conditions for this flow instability are accurately predicted by a continuum criterion based on the principles of irreversible thermodynamics of large plastic flow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies have been carried out to recover copper from vanadiferrous magnetite ores by a novel reaction with lime in the presence of water vapour. The ore, mixed with different proportions of lime, has been roasted in the presence of steam. The roasted product is either directly leached with dilute mineral acids or subjected to magnetic separation and then leached. The effect of various parameters such as amount of lime added, temperature and duration of roasting and time of leaching on the recovery of copper has been investigated. The results indicate that over 90% copper could be recovered under optimum conditions of roasting and leaching.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mixed ionic and electronic conduction in Zr02-based solid electrolytes was studied.The effect of impurities and second-phase particles on the mixed conduction parameter, P,, was measured for different types of ZrOZ electrolytes. The performance of solid-state sensors incorporating ZrOZ electrolytes is sometimes limited by electronic conduction in ZrOZ, especially at temperatures >I800 K. Methods for eliminating or minimizing errors in measured emf due to electronically driven transport of oxygen anions are discussed. Examples include probes for monitoring oxygen content in liquid steel as well as the newly developed sulfur sensor based on a ZrOz(Ca0) + CaS electrolyte. The use of mixed conducting ZrOZ as a semipermeable membrane or chemically selective sieve for oxygen at high temperatures is discussed. Oxygen transport from liquid iron to CO + C& gas mixtures through a ZrOZ membrane driven by a chemical potential gradient, in the absence of electrical leads or imposed potentials, was experimentally observed.