179 resultados para Ribs


Relevância:

20.00% 20.00%

Publicador:

Resumo:

When crest-fixed thin trapezoidal steel cladding with closely spaced ribs is subjected to wind uplift/suction forces, local dimpling or pull-through failures occur prematurely at their screw connections because of the large stress concentrations in the cladding under the screw heads. Currently, the design of crest-fixed profiled steel cladding is mainly based on time consuming and expensive laboratory tests due to the lack of adequate design rules. In this research, a shell finite element model of crest-fixed trapezoidal steel cladding with closely spaced ribs was developed and validated using experimental results. The finite element model included a recently developed splitting criterion and other advanced features including geometric imperfections, buckling effects, contact modelling and hyperelastic behaviour of neoprene washers, and was used in a detailed parametric study to develop suitable design formulae for local failures. This paper presents the details of the finite element analyses, large scale experiments and their results including the new wind uplift design strength formulae for trapezoidal steel cladding with closely spaced ribs. The new design formulae can be used to achieve both safe and optimised solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SupaCee section is one of the cold-formed steel members which is increasingly used in the construction sector. It is characterized by unique ribbed web and curved lip elements, and is claimed to be more economical with extra strength than the traditional channel sections. SupaCee sections are widely used in Australia as floor joists, bearers, purlins and girts. Many experimental and numerical studies have been carried out to evaluate the behaviour and design of conventional channel beams subject to web crippling. To date, however, no investigation has been conducted into the web crippling behaviour and strength of SupaCee sections. Current cold-formed steel design equations do not include any design procedures for SupaCee sections. Hence experimental studies were conducted to assess the web crippling behaviour and strengths of SupaCee sections under ETF and ITF load cases. Thirty six web crippling tests were conducted and the capacity results were compared with the predictions from the AS/NZS 4600 and AISI design rules developed for conventional channel sections. Comparison of ultimate web crippling capacities from tests showed that AS/NZS 4600 and AISI design equations are unconservative for SupaCee sections under ETF load case, but are overly conservative for ITF load case. Hence new equations were proposed to determine the web crippling capacities of SupaCee sections based on the experimental results from this study. Suitable design rules were also developed within the direct strength method format. This paper presents the details of this experimental study of SupaCee sections subject to web crippling and the results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among the external manifestations of scoliosis, the rib hump, which is associated with the ribs' deformities and rotations, constitutes the most disturbing aspect of the scoliotic deformity for patients. A personalized 3-D model of the rib cage is important for a better evaluation of the deformity, and hence, a better treatment planning. A novel method for the 3-D reconstruction of the rib cage, based only on two standard radiographs, is proposed in this paper. For each rib, two points are extrapolated from the reconstructed spine, and three points are reconstructed by stereo radiography. The reconstruction is then refined using a surface approximation. The method was evaluated using clinical data of 13 patients with scoliosis. A comparison was conducted between the reconstructions obtained with the proposed method and those obtained by using a previous reconstruction method based on two frontal radiographs. A first comparison criterion was the distances between the reconstructed ribs and the surface topography of the trunk, considered as the reference modality. The correlation between ribs axial rotation and back surface rotation was also evaluated. The proposed method successfully reconstructed the ribs of the 6th-12th thoracic levels. The evaluation results showed that the 3-D configuration of the new rib reconstructions is more consistent with the surface topography and provides more accurate measurements of ribs axial rotation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION Though developed for thoracic insufficiency syndrome, the spinal growth-stimulating potential and the ease of placement of vertical expandable titanium ribs (VEPTRs) has resulted in their widespread use for early-onset spine deformity. Observation of implant-related ossifications warrants further assessment, since they may be detrimental to the function-preserving non-fusion strategy. PATIENTS AND METHODS Radiographs (obtained pre and post index procedure, and at 4-year follow-up) and the records of 65 VEPTR patients from four paediatric spine centres were analysed. Ossifications were classified as type I (at anchor points), type II (along the central part) or type III (re-ossification after thoracostomy). RESULTS The average age at the index procedure was 6.5 years (min 1, max 13.7). The most prevalent spine problem was congenital scoliosis (37) with rib fusions (34), followed by neuromuscular and syndromic deformities (13 and 8, respectively). Idiopathic and secondary scoliosis (e.g. after thoracotomy) were less frequent (3 and 4, respectively). Forty-two of the 65 (65 %) patients showed ossifications, half of which were around the anchors. Forty-five percent (15/33) without pre-existing rib fusions developed a type II ossification along the implant. Re-ossifications of thoracostomies were less frequent (5/34, 15 %). The occurrence of ossifications was not associated with patient-specific factors. CONCLUSIONS Implant-related ossifications around VEPTR are common. In contrast to harmless bone formation around anchors, ossifications around the telescopic part and the rod section are troublesome in view of their possible negative impact on chest cage compliance and spinal mobility. This potential side effect needs to be considered during implant selection, particularly in patients with originally normal thoracic and spinal anatomy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[from article that appeared in Journal of Physical Education, Nov-Dec. 1956]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

At the Mater Children’s Hospital, approximately 80% of patients presenting with Adolescent Idiopathic Scoliosis requiring corrective surgery receive a fulcrum bending radiograph. The fulcrum bending radiograph provides a measurement of spine flexibility and a better indication of achievable surgical correction than lateral-bending radiographs (Cheung and Luk, 1997; Hay et al 2008). The magnitude and distribution of the corrective force exerted by the bolster on the patient’s body is unknown. The objective of this pilot study was to measure, for the first time, the forces transmitted to the patient’s ribs through the bolster during the fulcrum bending radiograph.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents an analytical model to study the effect of stiffening ribs on vibration transmission between two rectangular plates coupled at right angle. Interesting wave attenuation patterns were observed by placing the stiffening rib either on the source or on the receiving plate. The result can be used to improve the understanding of vibration and for vibration control of more complex structures such as transformer tanks and machine covers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This retrospective review examines healing in different sites on a porcine burn model; 24 pairs of burns on 18 pigs from other animal trials were selected for analysis. Each pair of burns was located on the either the cranial or the caudal part of the thoracic ribs region, on the same side of the animal. The burns were 40-50 cm(2) in size and of uniform deep-dermal partial thickness. Caudal burns healed significantly better than cranial burns, demonstrated by earlier closure of wounds, less scar formation and better cosmesis. To our knowledge, this is the first detailed study reporting that burn healing is affected by location on a porcine burn model. We recommend that similar symmetrical burns should be used for future comparative assessments of burn healing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION Managing spinal deformities in young children is challenging, particularly early onset scoliosis (EOS). Surgical intervention is often required if EOS has been unresponsive to conservative treatment particularly with rapidly progressive curves. An emerging treatment option for EOS is fusionless scoliosis surgery. Similar to bracing, this surgical option potentially harnesses growth, motion and function of the spine along with correcting spinal deformity. Dual growing rods are one such fusionless treatment, which aims to modulate growth of the vertebrae. The aim of this study was to ascertain the extent to which semiconstrained growing rods (Medtronic, Sofamor, Danek, Memphis, TN) with a telescopic sleeve component, reduce rotational constraint on the spine compared with standard "constrained / rigid" rods and hence potentially provide a more physiological mechanical environment for the growing spine. METHODS Six 40-60kg English Large White porcine spines served as a model for the paediatric human spine. Each spine was dissected into a 7 level thoracolumbar multi-segment unit (MSU), removing all non-ligamentous soft tissues and leaving 3cm of ribs either side. Pure nondestructive axial rotation moments of ±4Nm at a constant rotation rate of 8deg.s-1 were applied to the mounted MSU spines using a biaxial Instron testing machine. Displacement of each vertebral level was captured using a 3D motion tracking system (Optotrak 3020, Northern Digital Inc, Waterloo, ON). Each spine was tested in an un-instrumented state first and then with appropriately sized semi-constrained growing rods and rigid rods in alternating sequence. The rods were secured by multi-axial pedicle screws (Medtronic CD Horizon) at levels 2 and 6 of the construct. The range of motion (ROM), neutral zone (NZ) size and stiffness (Nm.deg-1) were calculated from the Instron load-displacement data and intervertebral ROM was calculated through a MATLAB algorithm from Optotrak data. RESULTS Irrespective of the order of testing, rigid rods significantly reduced the total ROM compared with semi-constrained rods (p<0.05) with in a significantly stiffer spine for both left and right axial rotation (p<0.05). Analysing the intervertebral motion within the instrumented levels 2-6, rigid rods showed reduced ROM compared with semi-constrained growing rods and compared with un-instrumented motion segments. CONCLUSION Semi-constrained growing rods maintain similar stiffness in axial rotation to un-instrumented spines, while dual rigid rods significantly reduce axial rotation. Clinically the effect of semi-constrained growing rods as observed in this study is that they would be expected to allow growth via the telescopic rod components while maintaining the axial flexibility of the spine, which may reduce occurrence of the crankshaft phenomenon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction The importance of in vitro biomechanical testing in today’s understanding of spinal pathology and treatment modalities cannot be stressed enough. Different studies have used differing levels of dissection of their spinal segments for their testing protocols[1, 2]. The aim of this study was to assess the impact of removing the costovertebral joints and partial resection of the spinous process sequentially, on the stiffness of the immature thoracic bovine spinal segment. Materials and Methods Thoracic spines from 6-8 week old calves were used. Each spine was dissected and divided into motion segments with 5cm of attached rib on each side and full spinous processes including levels T4-T11 (n=28). They were potted in polymethylemethacrylate. An Instron Biaxial materials testing machine with a custom made jig was used for testing. The segments were tested in flexion/extension, lateral bending and axial rotation at 37⁰C and 100% humidity, using moment control to a maximum 1.75 Nm with a loading rate of 0.3 Nm per second. They were first tested intact for ten load cycles with data collected from the tenth cycle. Progressive dissection was performed by removing first the attached ribs, followed by the spinous process at its base. Biomechanical testing was carried out after each level of dissection using the same protocol. Statistical analysis of the data was performed using repeated measures ANOVA. Results In combined flexion/extension there was a significant reduction in stiffness of 16% (p=0.002). This was mainly after resection of the ribs (14%, p=0.024) and mainly occurred in flexion where stiffness reduced by 22% (p=0.021). In extension, stiffness dropped by 13% (p=0.133). However there was no further significant change in stiffness on resection of the spinous process (<1%) (p=1.00). In lateral bending there was a significant decrease in stiffness of 13% (p<0.001). This comprised a drop of 11% on resection of the ribs (p=0.009) and a further 8% on resection of the spinous process (p=0.014). There was no difference between left and right bending. In axial rotation there was no significant change in stiffness after each stage of dissection (p=0.253). There was no difference between left and right rotation. Conclusion The costovertebral joints play a significant role in providing stability to the bovine thoracic spine in both flexion/extension and lateral bending, whereas the spinous processes play a minor role. Both elements have little effect on axial rotation stability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Short-rib polydactyly syndromes (SRPS I-V) are a group of lethal congenital disorders characterized by shortening of the ribs and long bones, polydactyly, and a range of extraskeletal phenotypes. A number of other disorders in this grouping, including Jeune and Ellis-van Creveld syndromes, have an overlapping but generally milder phenotype. Collectively, these short-rib dysplasias (with or without polydactyly) share a common underlying defect in primary cilium function and form a subset of the ciliopathy disease spectrum. By using whole-exome capture and massive parallel sequencing of DNA from an affected Australian individual with SRPS type III, we detected two novel heterozygous mutations in WDR60, a relatively uncharacterized gene. These mutations segregated appropriately in the unaffected parents and another affected family member, confirming compound heterozygosity, and both were predicted to have a damaging effect on the protein. Analysis of an additional 54 skeletal ciliopathy exomes identified compound heterozygous mutations in WDR60 in a Spanish individual with Jeune syndrome of relatively mild presentation. Of note, these two families share one novel WDR60 missense mutation, although haplotype analysis suggested no shared ancestry. We further show that WDR60 localizes at the base of the primary cilium in wild-type human chondrocytes, and analysis of fibroblasts from affected individuals revealed a defect in ciliogenesis and aberrant accumulation of the GLI2 transcription factor at the centrosome or basal body in the absence of an obvious axoneme. These findings show that WDR60 mutations can cause skeletal ciliopathies and suggest a role for WDR60 in ciliogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Segmentation defects of the vertebrae (SDV) are caused by aberrant somite formation during embryogenesis and result in irregular formation of the vertebrae and ribs. The Notch signal transduction pathway plays a critical role in somite formation and patterning in model vertebrates. In humans, mutations in several genes involved in the Notch pathway are associated with SDV, with both autosomal recessive (MESP2, DLL3, LFNG, HES7) and autosomal dominant (TBX6) inheritance. However, many individuals with SDV do not carry mutations in these genes. Using whole-exome capture and massive parallel sequencing, we identified compound heterozygous mutations in RIPPLY2 in two brothers with multiple regional SDV, with appropriate familial segregation. One novel mutation (c.A238T:p.Arg80*) introduces a premature stop codon. In transiently transfected C2C12 mouse myoblasts, the RIPPLY2 mutant protein demonstrated impaired transcriptional repression activity compared with wild-type RIPPLY2 despite similar levels of expression. The other mutation (c.240-4T>G), with minor allele frequency <0.002, lies in the highly conserved splice site consensus sequence 5' to the terminal exon. Ripply2 has a well-established role in somitogenesis and vertebral column formation, interacting at both gene and protein levels with SDV-associated Mesp2 and Tbx6. We conclude that compound heterozygous mutations in RIPPLY2 are associated with SDV, a new gene for this condition. © The Author 2014.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The stress concentration that occurs when load is diffused from a constant stress member into thin sheet is an important problem in the design of light weight structures. By using solutions in biharmonic polar-trigonometric series, the stress concentration can be effectively isolated so that highly accurate information necessary for design can be obtained. A method of analysis yielding high accuracy with limited effort is presented for rectangular panels with transverse edges free or supported by inextensional end ribs. Numerical data are given for panels with length twice the width.