951 resultados para Renal ischemia and reperfusion injury


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of estrogen and ovariectomy on indexes of muscle damage after 2 h of complete hindlimb ischemia and 2 h of reperfusion were investigated in female Sprague-Dawley rats. The rats were assigned to one of three experimental groups: ovariectomized with a 17-estradiol pellet implant (OE), ovariectomized with a placebo pellet implant (OP), or control with intact ovaries (R). It was hypothesized that following ischemia-reperfusion (I/R), muscle damage indexes [serum creatine kinase (CK) activity, calpain-like activity, inflammatory cell infiltration, and markers of lipid peroxidation (thiobarbituric-reactive substances)] would be lower in the OE and R rats compared with the OP rats due to the protective effects of estrogen. Serum CK activity following I/R was greater (P < 0.01) in the R rats vs. OP rats and similar in the OP and OE rats. Calpain-like activity was greatest in the R rats (P < 0.01) and similar in the OP and OE rats. Neutrophil infiltration was assessed using the myeloperoxidase (MPO) assay and immunohistochemical staining for CD43-positive (CD43+) cells. MPO activity was lower (P < 0.05) in the OE rats compared with any other group and similar in the OP and R rats. The number of CD43+ cells was greater (P < 0.01) in the OP rats compared with the OE and R rats and similar in the OE and R rats. The OE rats had lower (P < 0.05) thiobarbituric-reactive substance content following I/R compared with the R and OP rats. Indexes of muscle damage were consistently attenuated in the OE rats but not in the R rats. A 10-fold difference in serum estrogen content may mediate this. Surprisingly, serum CK activity and muscle calpain-like activity were lower (P < 0.05) in the OP rats compared with the R rats. Increases in serum insulin-like growth factor-1 content (P < 0.05) due to ovariectomy were hypothesized to account for this finding. Thus both ovariectomy and estrogen supplementation have differential effects on indexes of I/R muscle damage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coronary heart disease (CHD) remains the greatest killer in the Western world, and although the death rate from CHD has been falling, the current increased prevalence of major risk factors including obesity and diabetes, suggests it is likely that CHD incidence will increase over the next 20 years. In conjunction with preventive strategies, major advances in the treatment of acute coronary syndromes and myocardial infarction have occurred over the past 20 years. In particular the ability to rapidly restore blood flow to the myocardium during heart attack, using interventional cardiologic or thrombolytic approaches has been a major step forward. Nevertheless, while 'reperfusion' is a major therapeutic aim, the process of ischemia followed by reperfusion is often followed by the activation of an injurious cascade. While the pathogenesis of ischemia-reperfusion is not completely understood, there is considerable evidence implicating reactive oxygen species (ROS) as an initial cause of the injury.

ROS formed during oxidative stress can initiate lipid peroxidation, oxidize proteins to inactive states and cause DNA strand breaks, all potentially damaging to normal cellular function. ROS have been shown to be generated following routine clinical procedures such as coronary bypass surgery and thrombolysis, due to the unavoidable episode of ischemia-reperfusion. Furthermore, they have been associated with poor cardiac recovery post-ischemia, with recent studies supporting a role for them in infarction, necrosis, apoptosis, arrhythmogenesis and endothelial dysfunction following ischemia-reperfusion. In normal physiological condition, ROS production is usually homeostatically controlled by endogenous free radical scavengers such as superoxide dismutase, catalase, and the glutathione peroxidase and thioredoxin reductase systems. Accordingly, targeting the generation of ROS with various antioxidants has been shown to reduce injury following oxidative stress, and improve recovery from ischemia-reperfusion injury.

This review summarises the role of myocardial antioxidant enzymes in ischemia-reperfusion injury, particularly the glutathione peroxidase (GPX) and the thioredoxin reductase (TxnRed) systems. GPX and TxnRed are selenocysteine dependent enzymes, and their activity is known to be dependent upon an adequate supply of dietary selenium. Moreover, various studies suggest that the supply of selenium as a cofactor also regulates gene expression of these selenoproteins. As such, dietary selenium supplementation may provide a safe and convenient method for increasing antioxidant protection in aged individuals, particularly those at risk of ischemic heart disease, or in those undergoing clinical procedures involving transient periods of myocardial hypoxia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Activation of prosurvival kinases and subsequent nitric oxide (NO) production by certain G protein-coupled receptors (GPCRs) protects myocardium in ischemia/reperfusion injury (I/R) models. GPCR signaling pathways are regulated by GPCR kinases (GRKs), and GRK2 has been shown to be a critical molecule in normal and pathological cardiac function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular responses to hypoxia restore oxygen homeostasis and promote cell survival, and are mainly regulated through the activation of the hypoxia-inducible transcription factor (HIF)-1 and its target genes. In this study we questioned whether surgically depleting the liver s arterial blood supply, by clamping the hepatic artery (HA), would be sufficient to mount a hypoxia-driven molecular response, the up-regulation of hepatoprotective genes and thereby protect the liver from subsequent damaging insults.;;The HA of normal male Balb/c mice was clamped with a micro vascular clip for 2 hours. The liver s saturated oxygen concentration (SO2) was measured using an O2C surface probe (LEA-Medizintechnik) and interstitial fluid was collected with microdialysis membranes to monitor tissue damage. Mice without clamping served as sham operated controls. Interstitial fluid was assessed for lactate pyruvate (L/P) and glycerol content and the mRNA of hepatoprotective genes was analyzed by real time PCR. Subsequently, mice received either a tail vein injection of anti-Fas antibody (Jo2, 0.2 mg/kg) or the liver was made ischemic (60min) followed by 6 hours reperfusion. Caspase 3-activity and cleaved lamin A were used to assess apoptosis. In separate groups, animal were monitored for survival.;;After 30min of clamping the HA the SO2 of the liver decreased and remained at a reduced level for up to 2 hours, without an increase in L/P ratio or glycerol release. We demonstrate the activation of a hypoxia-inducible signaling pathway by the stabilization of HIF-1 protein (Western blot) and by an increase of its target gene, Epo, mRNA. There was an up-regulation of the hepatoprotective genes IL-6, IGFBP-1, HO-1 and A20 mRNA. When subsequently injected with Jo2, animals preconditioned with HA clamping, had a significantly decreased caspase-3 activity (avg21044 vs. avg3637; p=0.001, T-test) and there were fewer positive cells for cleaved Lamin A. The survival probability (10.5 hours, n=12) of mice with HA clamping was significantly higher (3.2 hours, n=13; p=0.014, Logrank test). Likewise, survival after 60 minutes of partial hepatic ischemia and 6 hours of reperfusion was reduced from 86% in mice with pretreatment by HA clamping to 56% in sham treated controls.;;This study demonstrates that a localized hypoxic stress can be achieved by surgically removing the livers arterial blood supply. Furthermore it can stimulate a hepatoprotective response that protects the liver against Fas-mediated apoptosis and ischemia-reperfusion injury. Our findings offer an innovative approach to induce hepatoprotective genes to defend the liver against subsequent insults.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Ischemia/reperfusion injury of lower extremities and associated lung damage may result from thrombotic occlusion, embolism, trauma, or surgical intervention with prolonged ischemia and subsequent restoration of blood flow. This clinical entity is characterized by high morbidity and mortality. Deprivation of blood supply leads to molecular and structural changes in the affected tissue. Upon reperfusion inflammatory cascades are activated causing tissue injury. We therefore tested preoperative treatment for prevention of reperfusion injury by using C1 esterase inhibitor (C1 INH). METHODS AND FINDINGS Wistar rats systemically pretreated with C1 INH (n = 6), APT070 (a membrane-targeted myristoylated peptidyl construct derived from human complement receptor 1, n = 4), vehicle (n = 7), or NaCl (n = 8) were subjected to 3h hind limb ischemia and 24h reperfusion. The femoral artery was clamped and a tourniquet placed under maintenance of a venous return. C1 INH treated rats showed significantly less edema in muscle (P<0.001) and lung and improved muscle viability (P<0.001) compared to controls and APT070. C1 INH prevented up-regulation of bradykinin receptor b1 (P<0.05) and VE-cadherin (P<0.01), reduced apoptosis (P<0.001) and fibrin deposition (P<0.01) and decreased plasma levels of pro-inflammatory cytokines, whereas deposition of complement components was not significantly reduced in the reperfused muscle. CONCLUSIONS C1 INH reduced edema formation locally in reperfused muscle as well as in lung, and improved muscle viability. C1 INH did not primarily act via inhibition of the complement system, but via the kinin and coagulation cascade. APT070 did not show beneficial effects in this model, despite potent inhibition of complement activation. Taken together, C1 INH might be a promising therapy to reduce peripheral ischemia/reperfusion injury and distant lung damage in complex and prolonged surgical interventions requiring tourniquet application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ischemia-reperfusion (I/R) injury is a common clinical event with the potential to seriously affect, and sometimes kill, the patient. Interruption of blood supply causes ischemia, which rapidly damages metabolically active tissues. Paradoxically, restoration of blood flow to the ischemic tissues initiates a cascade of pathology that leads to additional cell or tissue injury. I/R is a potent inducer of complement activation that results in the production of a number of inflammatory mediators. The use of specific inhibitors to block complement activation has been shown to prevent local tissue injury after I/R. Clinical and experimental studies in gut, kidney, limb, and liver have shown that I/R results in local activation of the complement system and leads to the production of the complement factors C3a, C5a, and the membrane attack complex. The novel inhibitors of complement products may find wide clinical application because there are no effective drug therapies currently available to treat I/R injuries.

Relevância:

100.00% 100.00%

Publicador: