955 resultados para REGIONAL PROCESSES


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report presents the results of a two-year investigation and summary of oceanographic satellite data obtained from multiple operational data providers and sources, spanning years of operational data collection. Long-term summaries of Sea Surface Temperature (SST) and SST fronts, Sea Surface Height Anomalies (SSHA), surface currents, ocean color chlorophyll and turbidity, and winds are provided. Merged satellite oceanographic data revealed information on: (1) seasonal cycles and timing of transition periods; (2) linkages between seasonal effects (warming and cooling), upwelling processes and transport; and (3) nutrient/sediment sources, sinks, and physical limiting factors controlling surface response for Olympic Coast marine environments. These data and information can be used for building relevant hind cast models, ecological forecasts, and regional environmental indices (e.g. upwelling, climate, “hot spot”) on biological distribution and/or response in the PNW.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Physiological processes and local-scale structural dynamics of mangroves are relatively well studied. Regional-scale processes, however, are not as well understood. Here we provide long-term data on trends in structure and forest turnover at a large scale, following hurricane damage in mangrove ecosystems of South Florida, U.S.A. Twelve mangrove vegetation plots were monitored at periodic intervals, between October 1992 and March 2005. Mangrove forests of this region are defined by a −1.5 scaling relationship between mean stem diameter and stem density, mirroring self-thinning theory for mono-specific stands. This relationship is reflected in tree size frequency scaling exponents which, through time, have exhibited trends toward a community average that is indicative of full spatial resource utilization. These trends, together with an asymptotic standing biomass accumulation, indicate that coastal mangrove ecosystems do adhere to size-structured organizing principles as described for upland tree communities. Regenerative dynamics are different between areas inside and outside of the primary wind-path of Hurricane Andrew which occurred in 1992. Forest dynamic turnover rates, however, are steady through time. This suggests that ecological, more-so than structural factors, control forest productivity. In agreement, the relative mean rate of biomass growth exhibits an inverse relationship with the seasonal range of porewater salinities. The ecosystem average in forest scaling relationships may provide a useful investigative tool of mangrove community biomass relationships, as well as offer a robust indicator of general ecosystem health for use in mangrove forest ecosystem management and restoration.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Buffer zones are vegetated strip-edges of agricultural fields along watercourses. As linear habitats in agricultural ecosystems, buffer strips dominate and play a leading ecological role in many areas. This thesis focuses on the plant species diversity of the buffer zones in a Finnish agricultural landscape. The main objective of the present study is to identify the determinants of floral species diversity in arable buffer zones from local to regional levels. This study was conducted in a watershed area of a farmland landscape of southern Finland. The study area, Lepsämänjoki, is situated in the Nurmijärvi commune 30 km to the north of Helsinki, Finland. The biotope mosaics were mapped in GIS. A total of 59 buffer zones were surveyed, of which 29 buffer strips surveyed were also sampled by plot. Firstly, two diversity components (species richness and evenness) were investigated to determine whether the relationship between the two is equal and predictable. I found no correlation between species richness and evenness. The relationship between richness and evenness is unpredictable in a small-scale human-shaped ecosystem. Ordination and correlation analyses show that richness and evenness may result from different ecological processes, and thus should be considered separately. Species richness correlated negatively with phosphorus content, and species evenness correlated negatively with the ratio of organic carbon to total nitrogen in soil. The lack of a consistent pattern in the relationship between these two components may be due to site-specific variation in resource utilization by plant species. Within-habitat configuration (width, length, and area) were investigated to determine which is more effective for predicting species richness. More species per unit area increment could be obtained from widening the buffer strip than from lengthening it. The width of the strips is an effective determinant of plant species richness. The increase in species diversity with an increase in the width of buffer strips may be due to cross-sectional habitat gradients within the linear patches. This result can serve as a reference for policy makers, and has application value in agricultural management. In the framework of metacommunity theory, I found that both mass effect(connectivity) and species sorting (resource heterogeneity) were likely to explain species composition and diversity on a local and regional scale. The local and regional processes were interactively dominated by the degree to which dispersal perturbs local communities. In the lowly and intermediately connected regions, species sorting was of primary importance to explain species diversity, while the mass effect surpassed species sorting in the highly connected region. Increasing connectivity in communities containing high habitat heterogeneity can lead to the homogenization of local communities, and consequently, to lower regional diversity, while local species richness was unrelated to the habitat connectivity. Of all species found, Anthriscus sylvestris, Phalaris arundinacea, and Phleum pretense significantly responded to connectivity, and showed high abundance in the highly connected region. We suggest that these species may play a role in switching the force from local resources to regional connectivity shaping the community structure. On the landscape context level, the different responses of local species richness and evenness to landscape context were investigated. Seven landscape structural parameters served to indicate landscape context on five scales. On all scales but the smallest scales, the Shannon-Wiener diversity of land covers (H') correlated positively with the local richness. The factor (H') showed the highest correlation coefficients in species richness on the second largest scale. The edge density of arable field was the only predictor that correlated with species evenness on all scales, which showed the highest predictive power on the second smallest scale. The different predictive power of the factors on different scales showed a scaledependent relationship between the landscape context and local plant species diversity, and indicated that different ecological processes determine species richness and evenness. The local richness of species depends on a regional process on large scales, which may relate to the regional species pool, while species evenness depends on a fine- or coarse-grained farming system, which may relate to the patch quality of the habitats of field edges near the buffer strips. My results suggested some guidelines of species diversity conservation in the agricultural ecosystem. To maintain a high level of species diversity in the strips, a high level of phosphorus in strip soil should be avoided. Widening the strips is the most effective mean to improve species richness. Habitat connectivity is not always favorable to species diversity because increasing connectivity in communities containing high habitat heterogeneity can lead to the homogenization of local communities (beta diversity) and, consequently, to lower regional diversity. Overall, a synthesis of local and regional factors emerged as the model that best explain variations in plant species diversity. The studies also suggest that the effects of determinants on species diversity have a complex relationship with scale.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Synthesis Despite theoretical criticisms, the ubiquity of linear relationships between local and regional species richness has long been used to justify it as a valid framework to conclude that local communities are not saturated with species. However, we reanalyzed published studies with a new unbiased method and found no prevalence of linear relationships and more than 40% of misclassifications, including textbook examples. We thus conclude that the prevailing argument in favor of associating a valid ecological interpretation to local-regional species richness plots, its ubiquity, is not sustained, and that ecologists could use for instance metacommunity theory to make inference on the strength of local and regional processes. Identifying the relative importance of regional and local processes to local species diversity is a central issue to many questions in basic and applied ecology. One widely-used method is to plot local species richness against its regional richness to infer whether regional or local processes determine local diversity. However, this method increases the tendency to find regional prevalence as suggested by a recent simulation. We reanalyzed studies in the literature with an unbiased method and found no prevalence of either regional or local processes. In addition, almost 40% of the studies and 50% of the ecology textbook examples using the traditional method were misclassified. Our findings reinforce the need of alternative, novel tools identified by for instance metacommunity theory to go beyond the studies of local-regional relationships in the ecological literature that focus on the interdependence of regional and local processes.© 2013 The Authors. Oikos © 2013 Nordic Society Oikos.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The European Union (EU) has been hailed as the most successful model of regional integration thus far, while the Association of Southeast Asian Nations (ASEAN), despite its fair share of critics and doomsayers, has been seen as a relatively successful regional organisation in the developing world. However, both seemed to have arrived at a critical juncture in their respective regional projects. Challenged by recent events, internal and external, and faced with increasing uncertainties and complexities, the EU and ASEAN are forced to re-examine the journey they have taken so far and ponder the road ahead. This paper seeks first to provide an overview of the two parallel processes of regionalism in Europe and Southeast Asia by focusing on the developments of the EU and ASEAN, and dissecting both the external forces and internal dynamics that shape the respective regional processes. It then sketches out some of the global trends likely to impact regional developments in Europe and Asia, and questions if the EU and ASEAN would need a new regional approach or paradigm if they are to maintain their salience and relevance as regional actors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The most common explanation for species diversity increasing towards the tropics is the corresponding increase in habitats (spatial heterogeneity). Consequently, a monoculture (like cotton in Australia) which is grown along a latitudinal gradient, should have the same degree of species diversity throughout its range. We tested to see if diversity in a dominant cotton community (spiders) changed with latitude, and if the community was structurally identical in different parts of Australia. We sampled seven sites extending over 20 degrees of latitude. At each site we sampled 1-3 fields 3-5 times during the cotton growing season using pitfall traps and beatsheets, recording all the spiders collected to family. We found that spider communities in cotton are diverse, including a large range of foraging guilds, making them suitable for a conservation biological control programme. We also found that spider diversity increased from high to low latitudes, and the communities were different, even though the spiders were in the same monocultural habitat. Spider beatsheet communities around Australia were dominated by different families, and responded differently to seasonal changes, indicating that different pest groups would be targeted at different locations. These results show that diversity can increase from high to low latitudes, even if spatial heterogeneity is held constant, and that other factors external to the cotton crop are influencing spider species composition. Other models which may account for the latitudinal gradient, such as non-equilibrium regional processes, are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Herbivorous insects comprise a major part of terrestrial biodiversity, and their interactions with their host plants and natural enemies are of vast ecological importance. A large body of research demonstrates that the ecology and evolution of these insects may be affected by trophic interactions, by abiotic influences, and by intraspecific processes, but so far research on these individual aspects has rarely been combined. This thesis uses the leaf-mining moth Tischeria ekebladella and the pedunculate oak (Quercus robur) as a case study to assess how spatial variation in trophic interactions and the physical distribution of host trees jointly affect the distribution, dynamics and evolution of a host-specific herbivore. With respect to habitat quality, Tischeria ekebladella experiences abundant variation at several spatial scales. Most of this variation occurs at small scales notably among leaves and shoots within individual trees. While hypothetically this could cause moths to evolve an ability to select leaves and shoots of high quality, I did not find any coupling between female preference and offspring performance. Based on my studies on temporal variation in resource quality I therefore propose that unpredictable temporal changes in the relative rankings of individual resource units may render it difficult for females to predict the fate of their developing offspring. With respect to intraspecific processes, my results suggest that limited moth dispersal in relation to the spatial distribution of oak trees plays a key role in determining the regional distribution of Tischeria ekebladella. The distribution of the moth is aggregated at the landscape level, where local leaf miner populations are less likely to be present where oaks are scarce. A modelling exercise based on empirical dispersal estimates revealed that the moth population on Wattkast an island in south-western Finland is spatially structured overall, but that the relative importance of local and regional processes on tree-specific moth dynamics varies drastically across the landscape. To conclude, my work in the oak-Tischeria ekebladella system demonstrates that the local abundance and regional distribution of a herbivore may be more strongly influenced by the spatial location of host trees than by their relative quality. Hence, it reveals the importance of considering spatial context in the study of herbivorous insects, and forms a bridge between the classical fields of plant-insect interactions and spatial ecology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Habitat fragmentation is currently affecting many species throughout the world. As a consequence, an increasing number of species are structured as metapopulations, i.e. as local populations connected by dispersal. While excellent studies of metapopulations have accumulated over the past 20 years, the focus has recently shifted from single species to studies of multiple species. This has created the concept of metacommunities, where local communities are connected by the dispersal of one or several of their member species. To understand this higher level of organisation, we need to address not only the properties of single species, but also establish the importance of interspecific interactions. However, studies of metacommunities are so far heavily biased towards laboratory-based systems, and empirical data from natural systems are urgently needed. My thesis focuses on a metacommunity of insect herbivores on the pedunculate oak Quercus robur a tree species known for its high diversity of host-specific insects. Taking advantage of the amenability of this system to both observational and experimental studies, I quantify and compare the importance of local and regional factors in structuring herbivore communities. Most importantly, I contrast the impact of direct and indirect competition, host plant genotype and local adaptation (i.e. local factors) to that of regional processes (as reflected by the spatial context of the local community). As a key approach, I use general theory to generate testable hypotheses, controlled experiments to establish causal relations, and observational data to validate the role played by the pinpointed processes in nature. As the central outcome of my thesis, I am able to relegate local forces to a secondary role in structuring oak-based insect communities. While controlled experiments show that direct competition does occur among both conspecifics and heterospecifics, that indirect interactions can be mediated by both the host plant and the parasitoids, and that host plant genotype may affect local adaptation, the size of these effects is much smaller than that of spatial context. Hence, I conclude that dispersal between habitat patches plays a prime role in structuring the insect community, and that the distribution and abundance of the target species can only be understood in a spatial framework. By extension, I suggest that the majority of herbivore communities are dependent on the spatial structure of their landscape and urge fellow ecologists working on other herbivore systems to either support or refute my generalization.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Algal bloom phenomenon was defined as "the rapid growth of one or more phytoplankton species which leads to a rapid increase in the biomass of phytoplankton", yet most estimates of temporal coherence are based on yearly or monthly sampling frequencies and little is known of how synchrony varies among phytoplankton or of the causes of temporal coherence during spring algal bloom. In this study, data of chlorophyll a and related environmental parameters were weekly gathered at 15 sampling sites in Xiangxi Bay of Three-Gorges Reservoir (TGR, China) to evaluate patterns of temporal coherence for phytoplankton during spring bloom and test if spatial heterogeneity of nutrient and inorganic suspended particles within a single ecosystem influences synchrony of spring phytoplankton dynamics. There is a clear spatial and temporal variation in chlorophyll a across Xiangxi Bay. The degree of temporal coherence for chlorophyll a between pairs of sites located in Xiangxi Bay ranged from -0.367 to 0.952 with mean and median values of 0.349 and 0.321, respectively. Low levels of temporal coherence were often detected among the three stretches of the bay (Down reach, middle reach and upper reach), while high levels of temporal coherence were often found within the same reach of the bay. The relative difference of DIN between pair sites was the strong predictor of temporal coherence for chlorophyll a in down and middle reach of the bay, while the relative difference in Anorganic Suspended Solids was the important factor regulating temporal coherence in middle and upper reach. Contrary to many studies, these results illustrate that, in a small geographic area (a single reservoir bay of approximately 25 km), spatial heterogeneity influence synchrony of phytoplankton dynamics during spring bloom and local processes may override the effects of regional processes or dispersal.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During summer 2008 and spring 2009, surface oceanographic surveys were carried out around three islands of the Azores archipelago (Terceira, Sao Miguel and Santa Maria) to assess the phytoplankton distribution and associated physico-chemical processes. The Azores archipelago is a major feature in the biogeochemical North Atlantic Subtropical Gyre (NAST) province although its influence on the productivity of the surrounding ocean is poorly known. Surface phytoplankton was studied by microscopy and HPLC (High Precision Liquid Chromatography). The mean values for biomass proxy Chlorophyll a (Chla) ranged from 0.04 to 0.55 mu g L-1 (Chla maximum = 0.86 mu g L-1) and coccolithophores were the most abundant group, followed by small flagellates, Cyanobacteria, diatoms and dinoflagellates being the least abundant group. The distribution of phytoplankton and coccolithophore species in particular presented seasonal differences and was consistent with the nearshore influence of warm subtropical waters from the south Azores current and colder subpolar waters from the north. The satellite-derived circulation patterns showed southward cold water intrusions off Terceira and northward warm water intrusions off Santa Maria. The warmer waters signal was confirmed by the subtropical coccolithophore assemblage, being Discosphaera tubifera a constant presence under these conditions. The regions of enhanced biomass, either resulting from northern cooler waters or from island induced processes, were characterized by the presence of Emiliania huxleyi. Diatoms and dinoflagellates indicated coastal and regional processes of nutrient enrichment and areas of physical stability, respectively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Reports of nuisance jellyfish blooms have increased worldwide during the last half-century, but the possible causes remain unclear.Apersistent difficulty lies in identifying whether blooms occur owing to local or regional processes. This issue can be resolved, in part, by establishing the geographical scales of connectivity among locations, which may be addressed using genetic analyses and oceanographic modelling. We used landscape genetics and Lagrangian modelling of oceanographic dispersal to explore patterns of connectivity in the scyphozoan jellyfish Rhizostoma octopus, which occurs en masse at locations in the Irish Sea and northeastern Atlantic. We found significant genetic structure distinguishing three populations, with both consistencies and inconsistencies with prevailing physical oceanographic patterns. Our analyses identify locations where blooms occur in apparently geographically isolated populations, locations where blooms may be the source or result of migrants, and a location where blooms do not occur consistently and jellyfish are mostly immigrant. Our interdisciplinary approach thus provides a means to ascertain the geographical origins of jellyfish in outbreaks, which may have wide utility as increased international efforts investigate jellyfish blooms. © 2013 The Authors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We examined variability in hierarchical beta diversity across ecosystems, geographical gradients, and organism groups using multivariate spatial mixed modeling analysis of two independent data sets. The larger data set comprised reported ratios of regional species richness (RSR) to local species richness (LSR) and the second data set consisted of RSR: LSR ratios derived from nested species-area relationships. There was a negative, albeit relatively weak, relationship between beta diversity and latitude. We found only relatively subtle differences in beta diversity among the realms, yet beta diversity was lower in marine systems than in terrestrial or freshwater realms. Beta diversity varied significantly among organisms' major characteristics such as body mass, trophic position, and dispersal type in the larger data set. Organisms that disperse via seeds had highest beta diversity, and passively dispersed organisms showed the lowest beta diversity. Furthermore, autotrophs had lower beta diversity than organisms higher up the food web; omnivores and carnivores had consistently higher beta diversity. This is evidence that beta diversity is simultaneously controlled by extrinsic factors related to geography and environment, and by intrinsic factors related to organism characteristics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Species-area relationships (SAR) are fundamental in the understanding of biodiversity patterns and of critical importance for predicting species extinction risk worldwide. Despite the enormous attention given to SAR in the form of many individual analyses, little attempt has been made to synthesize these studies. We conducted a quantitative meta-analysis of 794 SAR, comprising a wide span of organisms, habitats and locations. We identified factors reflecting both pattern-based and dynamic approaches to SAR and tested whether these factors leave significant imprints on the slope and strength of SAR. Our analysis revealed that SAR are significantly affected by variables characterizing the sampling scheme, the spatial scale, and the types of organisms or habitats involved. We found that steeper SAR are generated at lower latitudes and by larger organisms. SAR varied significantly between nested and independent sampling schemes and between major ecosystem types, but not generally between the terrestrial and the aquatic realm. Both the fit and the slope of the SAR were scale-dependent. We conclude that factors dynamically regulating species richness at different spatial scales strongly affect the shape of SAR. We highlight important consequences of this systematic variation in SAR for ecological theory, conservation management and extinction risk predictions.