986 resultados para RAPID EVOLUTION


Relevância:

100.00% 100.00%

Publicador:

Resumo:

NYD-SP12 is a recently identified spermatogenesis-related gene with a pivotal role in human testis development. In this study, we analyzed between-species divergence and within-species variation of NYD-SP12 in seven representative primate species, four wo

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MicroRNAs (miRNAs) are a growing class of small RNAs ( about 22 nt) that play crucial regulatory roles in the genome by targeting mRNAs for cleavage or translational repression. Most of the identified miRNAs are highly conserved among species, indicating

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: MicroRNAs (miRNAs), which are small, non-coding RNAs approximately 21-nucleotides in length, have become a major focus of research in molecular biology. Mammalian miRNAs are proposed to regulate approximately 30% of all protein-coding genes. P

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gene duplication has been considered the most important way of generating genetic novelties. The subsequent evolution right after gene duplication is critical for new function to occur. Here we analyzed the evolutionary pattern for a recently duplicated s

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There have been numerous recent observations of changes in the behavior and dynamics of migratory bird populations, but the plasticity of the migratory trait and our inability to track small animals over large distances have hindered investigation of the mechanisms behind migratory change. We used habitat-specific stable isotope signatures to show that recently evolved allopatric wintering populations of European blackcaps Sylvia atricapilla pair assortatively on their sympatric breeding grounds. Birds wintering further north also produce larger clutches and fledge more young. These findings describe an important process in the evolution of migratory divides, new migration routes, and wintering quarters. Temporal segregation of breeding is a way in which subpopulations of vertebrates may become isolated in sympatry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The liver fluke Fasciola hepatica is a major pathogen of livestock worldwide, causing huge economic losses to agriculture, as well as 2.4 million human infections annually.

RESULTS: Here we provide a draft genome for F. hepatica, which we find to be among the largest known pathogen genomes at 1.3 Gb. This size cannot be explained by genome duplication or expansion of a single repeat element, and remains a paradox given the burden it may impose on egg production necessary to transmit infection. Despite the potential for inbreeding by facultative self-fertilisation, substantial levels of polymorphism were found, which highlights the evolutionary potential for rapid adaptation to changes in host availability, climate change or to drug or vaccine interventions. Non-synonymous polymorphisms were elevated in genes shared with parasitic taxa, which may be particularly relevant for the ability of the parasite to adapt to a broad range of definitive mammalian and intermediate molluscan hosts. Large-scale transcriptional changes, particularly within expanded protease and tubulin families, were found as the parasite migrated from the gut, across the peritoneum and through the liver to mature in the bile ducts. We identify novel members of anti-oxidant and detoxification pathways and defined their differential expression through infection, which may explain the stage-specific efficacy of different anthelmintic drugs.

CONCLUSIONS: The genome analysis described here provides new insights into the evolution of this important pathogen, its adaptation to the host environment and external selection pressures. This analysis also provides a platform for research into novel drugs and vaccines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Cancer/testis (CT) genes are normally expressed only in germ cells, but can be activated in the cancer state. This unusual property, together with the finding that many CT proteins elicit an antigenic response in cancer patients, has established a role for this class of genes as targets in immunotherapy regimes. Many families of CT genes have been identified in the human genome, but their biological function for the most part remains unclear. While it has been shown that some CT genes are under diversifying selection, this question has not been addressed before for the class as a whole. RESULTS: To shed more light on this interesting group of genes, we exploited the generation of a draft chimpanzee (Pan troglodytes) genomic sequence to examine CT genes in an organism that is closely related to human, and generated a high-quality, manually curated set of human:chimpanzee CT gene alignments. We find that the chimpanzee genome contains homologues to most of the human CT families, and that the genes are located on the same chromosome and at a similar copy number to those in human. Comparison of putative human:chimpanzee orthologues indicates that CT genes located on chromosome X are diverging faster and are undergoing stronger diversifying selection than those on the autosomes or than a set of control genes on either chromosome X or autosomes. CONCLUSION: Given their high level of diversifying selection, we suggest that CT genes are primarily responsible for the observed rapid evolution of protein-coding genes on the X chromosome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Humans’ unique cognitive abilities are usually attributed to a greatly expanded neocortex, which has been described as “the crowning achievement of evolution and the biological substrate of human mental prowess” [1]. The human cerebellum, however, contains four times more neurons than the neocortex [2] and is attracting increasing attention for its wide range of cognitive functions. Using a method for detecting evolutionary rate changes along the branches of phylogenetic trees, we show that the cerebellum underwent rapid size increase throughout the evolution of apes, including humans, expanding significantly faster than predicted by the change in neocortex size. As a result, humans and other apes deviated significantly from the general evolutionary trend for neocortex and cerebellum to change in tandem, having significantly larger cerebella relative to neocortex size than other anthropoid primates. These results suggest that cerebellar specialization was a far more important component of human brain evolution than hitherto recognized and that technical intelligence was likely to have been at least as important as social intelligence in human cognitive evolution. Given the role of the cerebellum in sensory-motor control and in learning complex action sequences, cerebellar specialization is likely to have underpinned the evolution of humans’ advanced technological capacities, which in turn may have been a preadaptation for language.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the current challenges in evolutionary ecology is understanding the long-term persistence of contemporary-evolving predator–prey interactions across space and time. To address this, we developed an extension of a multi-locus, multi-trait eco-evolutionary individual-based model that incorporates several interacting species in explicit landscapes. We simulated eco-evolutionary dynamics of multiple species food webs with different degrees of connectance across soil-moisture islands. A broad set of parameter combinations led to the local extinction of species, but some species persisted, and this was associated with (1) high connectance and omnivory and (2) ongoing evolution, due to multi-trait genetic variability of the embedded species. Furthermore, persistence was highest at intermediate island distances, likely because of a balance between predation-induced extinction (strongest at short island distances) and the coupling of island diversity by top predators, which by travelling among islands exert global top-down control of biodiversity. In the simulations with high genetic variation, we also found widespread trait evolutionary changes indicative of eco-evolutionary dynamics. We discuss how the ever-increasing computing power and high-resolution data availability will soon allow researchers to start bridging the in vivo–in silico gap.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rapid speciation can occur on ecological time scales and interfere with ecological processes, resulting in species distribution patterns that are difficult to reconcile with ecological theory. The haplochromine cichlids in East African lakes are an extreme example of rapid speciation. We analyse the causes of their high speciation rates. Various studies have identified disruptive sexual selection acting on colour polymorphisms that might cause sympatric speciation. Using data on geographical distribution, colouration and relatedness from 41 species endemic to Lake Victoria, we test predictions from this hypothesis. Plotting numbers of pairs of closely related species against the amount of distributional overlap between the species reveals a bimodal distribution with modes on allopatric and sympatric. The proportion of sister species pairs that are heteromorphic for the traits under disruptive selection is higher in sympatry than in allopatry. These data support the hypothesis that disruptive sexual selection on colour polymorphisms has caused sympatric speciation and help to explain the rapid radiation of haplochromine species flocks.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador: