164 resultados para Quitosana


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanovesículas lipossômicas constituem promissoras estruturas auto-organizadas hábeis para encapsular e transportar diferentes substâncias, como os fármacos, e foram produzidas neste trabalho pelo método da evaporação em fase reversa. Fosfatidilcolina de alta pureza foi utilizada na produção das estruturas. Paralelamente procedeu-se a purificação de fosfatidilcolina por cromatografia em coluna a partir da lecitina de soja fornecida pela indústria de óleo de soja local. O processo foi monitorado por cromatografia em camada delgada e a caracterização foi feita por RMN do 1H e do 31P. O resultado mostrou que fosfatidilcolina pode ser purificada facilmente pela cromatografia em coluna, mas a sua degradação deve ser evitada por processos eficientes de conservação. Quitosana foi obtida pela desacetilação por hidrólise alcalina da quitina comercial. O grau de desacetilação resultante foi caracterizado por infra-vermelho e a massa molar média, assim como outros parâmetros do polímero em solução como raio de giro e segundo coeficiente virial, foram determinados pela técnica de espalhamento de luz estático. O polímero de caráter catiônico quitosana foi empregado na produção de nanovesículas lipossômicas para revestimento das estruturas, visando o aumento da estabilidade física das mesmas. A preparação de lipossomas pela evaporação em fase reversa constitui um processo em etapas, onde os diferentes estágios levam à formação de três sistemas vesiculares de distintas organizações estruturais: micelas reversas, organogel e lipossomas. As técnicas de viscosimetria, turbidimetria, ultra-violeta visível, espalhamento de luz estático e dinâmico e espalhamento de raios-X a baixo ângulo permitiram ampla caracterização destas estruturas com e sem quitosana. Dados como raio hidrodinâmico e ponto de percolação das micelas reversas, espessura lamelar do organogel, intensidade de espalhamento de luz, raio hidrodinâmico, raio de giro e espessura lamelar dos lipossomas foram obtidos. Além disso, o solvente orgânico éter etílico, clássico para este método de preparação foi substituído pelo acetato de etila sem prejuízo na formação das estruturas e com a vantagem do seu menor impacto ambiental. Lipossomas revestidos externa e internamente com quitosana formando um compósito foram obtidos com sucesso e apresentaram uma estabilidade física em solução aquosa maior do que lipossomas convencionais ou não revestidos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study proposes to do a study on the mathematical modeling of permeation of films based on chitosan. To conduct the study were obtained membranes with various compositions: a virtually pure membrane-based chitosan; one of chitosan associated with poly (ethylene oxide (PEO). The membranes of pure chitosan were treated with plasma in atmospheres of oxygen, argon and methane. The various types of films were characterized as to its permeation regarding sufamerazina sodium. In the process of mathematical modeling were compared the standard method of obtaining the coefficient of permeation recital straight down the slope of the plot obtained by extinction / time with a the integration process of numerical permeability rate will be calculated from the spectroscopy UV

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chitosan membranes have been modified by plasma, utilizing the following gases: nitrogen (N2), methane (CH4), argon (Ar), oxygen (O2) and hydrogen. The modified membranes by plasma were compared to the unmodified ones. The membranes were characterized by absorption assay, contact angle, atomic force microscopy (AFM). Also, permeability assay of sodium sulfamerazine from such membranes were carried out. Through the absorption assay and contact angle it was possible to obtain information of the wettability of the membranes and what changes the plasma treatment can promote in relation to it. The plasma treatment using oxygen promoted increase of the wetability and swelling while the samples treated with methane decrease of the wetability and swelling. Through the Optical Emission Spectroscopy (OES) it was possible to identify which species were present in the plasma during the treatment. And through the AFM analysis it was possible to observe the changes nanotopography occurred on the surface of the samples. Permeability assay were archived for all treated membranes and compared to no treated ones. Due to that assay it was possible verify which the plasma treatment increased the permeability spectrum of the membranes which has varied from 1,4548 *10-5cm2.min-1 to 2,7713*10-5cm2.min-1. Chitosan membranes with permeability varied are importance in systems drug delivery, to liberate a wide variety of drugs

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Primary cementing is one of the main operations in well drilling responsible for the mechanical stability and zonal isolation during the production of oil. However, the cement sheath is constantly under mechanical stresses and temperature variations caused by the recovery of heavy oil. In order to minimize fracture and wear of the cement sheath, new admixtures are developed to improve the properties of Portland cement slurries and avoid environmental contamination caused by leaking gas and oil. Polymers with the ability to form polymeric films are candidates to improve the properties of hardened cement slurries, especially their fracture energy. The present study aimed at evaluating the effect of the addition of a chitosan suspension on cement slurries in order to improve the properties of the cement and increase its performance on heavy oil recovery. Chitosan was dissolved in acetic ac id (0.25 M and 2 M) and added to the formulation of the slurries in different concentrations. SEM analyses confirmed the formation of polymeric films in the cementitious matrix. Strength tests showed higher fracture energy compared to slurries without the addition of chitosan. The formation of the polymeric films also reduced the permeability of the slurry. Therefore, chitosan suspensions can be potentially used as cementing admixtures for heavy oil well applications

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chitosan is being studied for use as dressing due their biological properties. Aiming to expand the use in biomedical applications, chitosan membranes were modified by plasma using the following gases: nitrogen (N2), methane (CH4), argon (Ar), oxygen (O2) and hydrogen (H2). The samples were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), contact angle, surface energy and water absorption test. Biological Tests were also performed, such as: test sterilization and proliferation of fibroblasts (3T3 line). Through SEM we observed morphological changes occurring during the plasma treatment, the formation of micro and nano-sized valleys. MFA was used to analyze different roughness parameters (Ra, Rp, Rz) and surface topography. It was found that the treated samples had an increase in surface roughness and sharp peaks. Methane plasma treatment decreased the hydrophilicity of the membranes and also the rate of water absorption, while the other treatments turned the membranes hydrophilic. The sterilization was effective in all treatment times with the following gases: Ar, N2 and H2. With respect to proliferation, all treatments showed an improvement in cell proliferation increased in a range 150% to 250% compared to untreated membrane. The highlights were the treatments with Ar 60 min, O2 60 min, CH4 15 min. Observing the results of the analyzes performed in this study, it appears that there is no single parameter that influences cell proliferation, but rather a set of ideal conditions that favor cell proliferation

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Brazil, several species of scorpions are known to cause accidents which can lead to death, which are mainly belonging to the genus Tityus. The scorpion Tityus serrulatus is the main responsible for more severe cases. Anti-scorpion serums are routinely produced by various institutions, despite their effectiveness, quality and action depends on how quickly treatment is started. Studies have been developed in the search for appropriate technologies to encapsulate and release recombinant or natives proteins capable of inducing antibody production. In this context, chitosan copolymer which can be obtained from the partial deacetylation of chitin or in some microorganisms and it is biocompatible and biodegradable has been widely used for this purpose. This study aimed to search for a system release from chitosan nanoparticles for peptide / protein of the venom of the scorpion T. serrulatus, able to provide a new model of immunization in animals, in order to obtain a potential novel polyclonal serum, anti-venom T. serrulatus. The chitosan nanoparticles were prepared by ionic gelation with polyanion tripolyphosphate (TPP). After standardizing the concentrations of TPP and chitosan was evaluated the efficiency of incorporation of bovine serum albumin (BSA) and scorpion venom, showed particle size compatible with the intended purpose. The particles showed adequate size around 200nm. The crosslinking was confirmed by absorption spectroscopy in the infrared. After verified the high encapsulation efficiency (EE) for acid bicinconínico method (BCA) protein assay and the particle size distribution, the success of the technique was proven and the potential for in vivo application of nanoparticles. The experimental animals were vaccinated and the antibodies measured by ELISA

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O objetivo deste trabalho foi avaliar a influência de cobertura de quitosana na pós-colheita de mangas 'Tommy Atkins', colhidas de vez e armazenadas a 23 ºC (65% UR). As mangas foram adquiridas na CEAGESP de Ribeirão Preto-SP, e transportadas ao Laboratório de Tecnologia de Produtos Agrícolas da UNESP de Jaboticabal. Após a seleção, os frutos foram higienizados em solução de dicloro s. triazinatriona sódica di-hidratada (Sumaveg®) a 200 mg 100g-1 de cloro livre por 10 minutos, secadas, imersas nas soluções a 0%; 1,0%; 1,5% e 2,0% de quitosana por 1 minuto, secadas sob ventilação, acondicionadas em bandejas e armazenadas a 23±2 °C e 65±5% UR, por 9 dias. Foram utilizados três repetições com dois frutos cada. Avaliaram-se, a cada três dias, a perda de massa fresca, a cor, a firmeza, os teores de ácido ascórbico, de sólidos solúveis, de acidez titulável e sólidos solúveis / acidez titulável. O recobrimento com quitosana retarda o amadurecimento de mangas 'Tommy Atkins' de vez, durante nove dias de armazenamento a 23 ºC, sendo que a concentração de 1,5% propicia melhor manutenção da cor da polpa, dos teores de sólidos solúveis, de acidez titulável, de ácido ascórbico, dos valores de SS/AT e de firmeza.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Perdas significativas ocorrem durante o armazenamento e a comercialização de uvas de mesa devido, principalmente, à ocorrência do mofo cinzento (Botrytis cinerea Pers.:Fr.) e, para o controle de patógenos emprega-se, geralmente, o dióxido de enxofre (SO2). Diante da restrição crescente ao uso de produtos químicos em pós-colheita, tem ocorrido considerável interesse em métodos alternativos de controle. Este trabalho teve como principal objetivo avaliar os efeitos da quitosana, na proteção pós-colheita de uva 'Itália' contra B. cinerea. In vivo, avaliou-se o efeito direto e indireto da quitosana pelo tratamento dos cachos de uva, antes e após a inoculação com o patógeno. Utilizou-se quitosana nas concentrações de 0,00; 0,25; 0,50; 1,00; 1,50 e 2,00 % (v/v). Para inoculação, em 10 bagas de cada cacho de uva foram feitos ferimentos de ±2 mm de profundidade, procedendo-se em seguida, a aspersão da suspensão de conídios (±10(5) conídios.mL-1) de B. cinerea. Após os tratamentos, os cachos foram mantidos a 25±1 °C / 80-90 % UR e avaliados diariamente quanto à incidência e severidade da podridão. Avaliações in vitro do efeito do produto sobre o patógeno também foram realizadas analisando-se o crescimento micelial e a germinação dos conídios de B. cinerea. A solução de quitosana, nas concentrações de 1,5 e 2,0 % (v/v), quando empregada após a inoculação com B cinerea, reduziu significativamente o índice de doença no entanto, quando os cachos foram tratados antes da inoculação, não houve efeito significativo do tratamento sobre o desenvolvimento da doença. Nos ensaios in vitro, a solução de quitosana, nas maiores concentrações, suprimiu o crescimento micelial do patógeno e retardou a germinação dos conídios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chitin and chitosan are nontoxic, biodegradable and biocompatible polymers produced by renewable natural sources with applications in diverse areas such as: agriculture, textile, pharmaceutical, cosmetics and biomaterials, such as gels, films and other polymeric membranes. Both have attracted greater interest of scientists and researchers as functional polymeric materials. In this context, the objective of this study was to take advantage of the waste of shrimp (Litopenaeus vannamei and Aristeus antennatus) and crabs (Ucides cordatus) from fairs, beach huts and restaurant in Natal/RN for the extraction of chitin and chitosan for the production of membranes by electrospinning process. The extraction was made through demineralization, deproteinization, deodorization and deacetylation. Morphological analyzes (SEM and XRD), Thermal analysis (TG and DTG), Spectroscopy in the Region of the Infrared with Transformed of Fourier (FTIR) analysis Calorimetry Differential Scanning (DSC) and mechanical tests for traction were performed. In (XRD) the semicrystalline structure of chitosan can be verified while the chitin had higher crystallinity. In the thermal analysis showed a dehydration process followed by decomposition, with similar behavior of carbonized material. Chitosan showed temperature of maximum degradation lower than chitin. In the analysis by Differential Scanning Calorimetry (DSC) the curves were coherent to the thermal events of the chitosan membranes. The results obtained with (DD) for chitosan extracted from Litopenaeus vannamei and Aristeus antennatus shrimp were (80.36 and 71.00%) and Ucides cordatus crabs was 74.65%. It can be observed that, with 70:30 solutions (v/v) (TFA/DCM), 60 and 90% CH3COOH, occurred better facilitate the formation of membranes, while 100:00 (v/v) (TFA/DCM) had formation of agglomerates. In relation to the monofilaments diameters of the chitosan membranes, it was noted that the capillary-collector distance of 10 cm and tensions of 25 and 30 kV contributed to the reduction of the diameters of membranes. It was found that the Young s modulus decreases with increasing concentration of chitosan in the membranes. 90% CH3COOH contributed to the increase in the deformation resulting in more flexible material. The membranes with 5% chitosan 70:30 (v/v) (TFA/DCM) had higher tensile strength

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Currently, studies in the area of polymeric microcapsules and nanocapsules and controlled release are considerably advanced. This work aims the study and development of microcapsules and nanocapsules from Chitosan/MDI, using a new technique of interfacial polycondensation combined to spontaneous emulsification, for encapsulation of BZ-3. It was firstly elaborated an experimental design of 23 of the particle in white without the presence of BZ-3 and Miglyol, where the variables were the concentrations of MDI, chitosan and solvent. Starting from the data supplied by the experimental design was chosen the experiment with smaller particle diameter and only added like this BZ-3 and Miglyol. The suspension containing concentrations of 6.25 mg/mL, 12.5 mg/mL, 18.75 mg/mL, 25 mg/mL of BZ-3 were prepared, nevertheless, during the storage time, these formulations presented drug precipitates in the suspensions of 18.75 mg/mL and 25 mg/mL of BZ-3. This apparition of precipitate was attributed to the diffusion of BZ-3 for the aqueous phase without any encapsulation, suggesting so the use of the smaller concentrations of the BZ-3. The suspension containing 6.25mg/mL of BZ3 presented average size of 1.47μm, zeta potential of 61 mV, pH 5.64 and this sample showed an amount of BZ-3 and drug entrapment of 100 %. The suspension containing 12.5mg/mL of BZ-3 presented average size of 1.76μm, zeta potential of 47.4 mV, pH 5.71 and this sample showed an amount of BZ-3 and drug entrapment of 100 %. Then, showing such important characteristics, these two formulations were chosen for futher continuity to the study. These formulations were also characterized by the morphology, FTIR, stability for Turbiscan, DSC and a study of controlled release of the BZ-3 was elaborated in different receiving means

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Actually, surveys have been developed for obtaining new materials and methodologies that aim to minimize environmental problems due to discharges of industrial effluents contaminated with heavy metals. The adsorption has been used as an alternative technology effectively, economically viable and potentially important for the reduction of metals, especially when using natural adsorbents such as certain types of clay. Chitosan, a polymer of natural origin, present in the shells of crustaceans and insects, has also been used for this purpose. Among the clays, vermiculite is distinguished by its good ion exchange capacity and in its expanded form enhances its properties by greatly increasing its specific surface. This study aimed to evaluate the functionality of the hybrid material obtained through the modification of expanded vermiculite with chitosan in the removal of lead ions (II) in aqueous solution. The material was characterized by infrared spectroscopy (IR) in order to evaluate the efficiency of modification of matrix, the vermiculite, the organic material, chitosan. The thermal stability of the material and the ratio clay / polymer was evaluated by thermogravimetry. To evaluate the surface of the material was used in scanning electron microscopy (SEM) and (BET). The BET analysis revealed a significant increase in surface area of vermiculite that after interaction with chitosan, was obtained a value of 21, 6156 m2 / g. Adsorption tests were performed according to the particle size, concentration and time. The results show that the capacity of removal of ions through the vermiculite was on average 88.4% for lead in concentrations ranging from 20-200 mg / L and 64.2% in the concentration range of 1000 mg / L. Regarding the particle size, there was an increase in adsorption with decreasing particle size. In fuction to the time of contact, was observed adsorption equilibrium in 60 minutes with adsorption capacity. The data of the isotherms were fitted to equation Freundlich. The kinetic study of adsorption showed that the pseudo second- order model best describes the adsorption adsorption, having been found following values K2=0,024 g. mg-1 min-1and Qmax=25,75 mg/g, value very close to the calculated Qe = 26.31 mg / g. From the results we can conclude that the material can be used in wastewater treatment systems as a source of metal ions adsorbent due to its high adsorption capacity

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The obtaining of the oligosaccharides from chitosanase, has showed interest of the pharmaceutical area in the last years due their countless functional properties. Although, the great challenge founded out is how to keep a constant and efficient production. The alternative proposed by this present work was to study the viability to develop an integrated technology, with reduced costs. The strategy used was the obtaining of the oligomers through enzymatic hydrolysis using chitosanolitic enzymes obtained straight from the fermented broth, eliminating this way the phases involved in the enzymes purification. The two chitosanases producing strains chosen for the work, Paenibacillus chitinolyticus and Paenibacillus ehimensis, were evaluated according to the behavior in the culture medium with simple sugar and in relation to the pH medium variations. The culture medium for the chitosanases induction and production was developed through addition of soluble chitosan as carbon source. The soluble chitosan was obtained using hydrochloric acid solution 0.1 M and afterwards neutralization with NaOH 10 M. The enzymatic complexes were obtained from induction process in culture medium with 0.2% of soluble chitosan. The enzymes production was verified soon after the consumption of the simple sugars by the microorganisms and the maximum chitosanolitic activity obtained in the fermented broth by Paenibacillus chitinolyticus was 249 U.L-1 and by Paenibacillus ehimensis was 495U.L-1. These two enzymatic complexes showed stability when stored at 20°C for about 91 days. The enzymes in the fermented broth by Paenibacillus chitinolyticus, when exposed at temperature of 55°C and pH 6.0, where the activity is maximum, showed 50% lost of activity after 3 hours Meanwhile, for the complex produced by Paenibacillus ehimensis, after 6 days of exposure, it was detected 100% of the activity. The chito-oligosaccharides obtained by the hydrolysis of a 1% chitosan solution, using the enzymatic complex produced by Paenibacillus chitinolyticus showed larger quantity after 9 hours hydrolysis and using the complex produced by Paenibacillus ehimensis after 20 minutes was observed the chito-ligosacharides with polymerization degree between 3 and 6 units. Evaluating these results, it was verified that the production of chitosan-oligosaccharides is possible, using a simultaneous process