992 resultados para Purinergic receptors


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have used P19 embryonal carcinoma cells as in vitro model for early neurogenesis to study ionotropic P2X and metabotropic P2Y receptor-induced Ca2+ transients and their participation in induction of proliferation and differentiation. In embryonic P19 cells, P2Y(1), P2Y(2) and P2X(4) receptors or P2X-heteromultimers with similar P2X4 pharmacology were responsible for ATP and ATP analogue-induced Ca2+ transients. In neuronal-differentiated cells, P2Y(2), P2Y(6), P2X(2) and possibly P2X(2)/P2X(6) heteromeric receptors were the major mediators of the elevations in intracellular free calcium concentration [Ca2+](i). We have collected evidence for the involvement of metabotropic purinergic receptors in proliferation induction of undifferentiated and neural progenitor cells by using a BrdU-incorporation assay. ATP-, UTP-, ADP-, 2-MeS-ATP- and ADP-beta S-induced proliferation in P19 cells was mediated by P2Y, and P2Y2 receptors as judged from pharmacological profiles of receptor responses. ATP-provoked acceleration of neuronal differentiation, determined by analysis of nestin and neuron-specific enolase gene and protein expression, also resulted from P2Y, and P2Y2 receptor activation. Proliferation- and differentiation-induction involved the activation of inositol-trisphosphate sensitive intracellular Ca2+ stores. (C) 2008 ISDN. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neural differentiation has been extensively studied in vitro in a model termed neurospheres, which consists of aggregates of neural progenitor cells. Previous studies suggest that they have a great potential for the treatment of neurological disorders. One of the major challenges for scientists is to control cell fate and develop ideal culture conditions for neurosphere expansion in vitro, without altering their features. Similar to human neural progenitors, rat neurospheres cultured in the absence of epidermal and fibroblast growth factors for a short period increased the levels of beta-3 tubulin and decreased the expression of glial fibrillary acidic protein and nestin, compared to neurospheres cultured in the presence of these factors. In this work, we show that rat neurospheres cultured in suspension under mitogen-free condition presented significant higher expression of P2X2 and P2X6 receptor subunits, when compared to cells cultured in the presence of growth factors, suggesting a direct relationship between P2X2/6 receptor expression and induction of neuronal differentiation in mitogen-free cultured rat neurospheres.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND/AIMS ATP-gated P2X4 purinergic receptors (P2X4Rs) are cation channels with important roles in diverse cell types. To date, lack of specific inhibitors has hampered investigations on P2X4Rs. Recently, the benzodiazepine derivative, 5-BDBD has been proposed to selectively inhibit P2X4Rs. However, limited evidences are currently available on its inhibitory properties. Thus, we aimed to characterize the inhibitory effects of 5-BDBD on recombinant human P2X4Rs. METHODS We investigated ATP-induced intracellular Ca(2+) signals and whole cell ion currents in HEK 293 cells that were either transiently or stably transfected with hP2X4Rs. RESULTS Our data show that ATP (< 1 μM) stimulates P2X4R-mediated Ca(2+) influx while endogenously expressed P2Y receptors are not activated to any significant extent. Both 5-BDBD and TNP-ATP inhibit ATP-induced Ca(2+) signals and inward ion currents in a concentration-dependent manner. Application of two different concentrations of 5-BDBD causes a rightward shift in ATP dose-response curve. Since the magnitude of maximal stimulation does not change, these data suggest that 5-BDBD may competitively inhibit the P2X4Rs. CONCLUSIONS Our results demonstrate that application of submicromolar ATP concentrations allows reliable assessment of recombinant P2XR functions in HEK 293 cells. Furthermore, 5-BDBD and TNP-ATP have similar inhibitory potencies on the P2X4Rs although their mechanisms of actions are different.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Somatic sensation requires the conversion of physical stimuli into the depolarization of distal nerve endings. A single cRNA derived from sensory neurons renders Xenopus laevis oocytes mechanosensitive and is found to encode a P2Y1 purinergic receptor. P2Y1 mRNA is concentrated in large-fiber dorsal root ganglion neurons. In contrast, P2X3 mRNA is localized to small-fiber sensory neurons and produces less mechanosensitivity in oocytes. The frequency of touch-induced action potentials from frog sensory nerve fibers is increased by the presence of P2 receptor agonists at the peripheral nerve ending and is decreased by the presence of P2 antagonists. P2X-selective agents do not have these effects. The release of ATP into the extracellular space and the activation of peripheral P2Y1 receptors appear to participate in the generation of sensory action potentials by light touch.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background The microenvironment plays a pivotal role in tumor cell proliferation, survival and migration. Invasive cancer cells face a new set of environmental challenges as they breach the basement membrane and colonize distant organs during the process of metastasis. Phenotypic switching, such as that which occurs during epithelial-mesenchymal transition (EMT), may be associated with a remodeling of cell surface receptors and thus altered responses to signals from the tumor microenvironment. Methodology/Principal Findings We assessed changes in intracellular Ca 2+ in cells loaded with Fluo-4 AM using a fluorometric imaging plate reader (FLIPR TETRA) and observed significant changes in the potency of ATP (EC 50 0.175 μM (-EGF) versus 1.731 μM (+EGF), P<0.05), and the nature of the ATP-induced Ca 2+ transient, corresponding with a 10-fold increase in the mesenchymal marker vimentin (P<0.05). We observed no change in the sensitivity to PAR2-mediated Ca 2+ signaling, indicating that these alterations are not simply a consequence of changes in global Ca 2+ homeostasis. To determine whether changes in ATP-mediated Ca 2+ signaling are preceded by alterations in the transcriptional profile of purinergic receptors, we analyzed the expression of a panel of P2X ionotropic and P2Y metabotropic purinergic receptors using real-time RT-PCR and found significant and specific alterations in the suite of ATP-activated purinergic receptors during EGF-induced EMT in breast cancer cells. Our studies are the first to show that P2X 5 ionotropic receptors are enriched in the mesenchymal phenotype and that silencing of P2X 5 leads to a significant reduction (25%, P<0.05) in EGF-induced vimentin protein expression. Conclusions The acquisition of a new suite of cell surface purinergic receptors is a feature of EGF-mediated EMT in MDA-MB-468 breast cancer cells. Such changes may impart advantageous phenotypic traits and represent a novel mechanism for the targeting of cancer metastasis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Purinergic signaling plays a key role in a variety of physiological functions, including regulation of immune responses. Conventional alpha beta T cells release ATP upon TCR cross-linking; ATP binds to purinergic receptors expressed by these cells and triggers T cell activation in an autocrine and paracrine manner. Here, we studied whether similar purinergic signaling pathways also operate in the ``unconventional'' gamma delta T lymphocytes. We observed that gamma delta T cells purified from peripheral human blood rapidly release ATP upon in vitro stimulation with anti-CD3/CD28-coated beads or IPP. Pretreatment of gamma delta T cells with (10)panx-1, CBX, or Bf A reversed the stimulation-induced increase in extracellular ATP concentration, indicating that panx-1, connexin hemichannels, and vesicular exocytosis contribute to the controlled release of cellular ATP. Blockade of ATP release with (10)panx-1 inhibited Ca2+ signaling in response to TCR stimulation. qPCR revealed that gamma delta T cells predominantly express purinergic receptor subtypes A2a, P2X1, P2X4, P2X7, and P2Y11. We found that pharmacological inhibition of P2X4 receptors with TNP-ATP inhibited transcriptional up-regulation of TNF-alpha and IFN-gamma in gamma delta T cells stimulated with anti-CD3/CD28-coated beads or IPP. Our data thus indicate that purinergic signaling via P2X4 receptors plays an important role in orchestrating the functional response of circulating human gamma delta T cells. J. Leukoc. Biol. 92: 787-794; 2012.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Therapeutic inhibition of poly(ADP-ribose) polymerase (PARP), as monotherapy or to supplement the potencies of other agents, is a promising strategy in cancer treatment. We previously reported that the first PARP inhibitor to enter clinical trial, rucaparib (AG014699), induced vasodilation in vivo in xenografts, potentiating response to temozolomide. We now report that rucaparib inhibits the activity of the muscle contraction mediator myosin light chain kinase (MLCK) 10-fold more potently than its commercially available inhibitor ML-9. Moreover, rucaparib produces additive relaxation above the maximal degree achievable with ML-9, suggesting that MLCK inhibition is not solely responsible for dilation. Inhibition of nitric oxide synthesis using L-NMMA also failed to impact rucaparib's activity. Rucaparib contains the nicotinamide pharmacophore, suggesting it may inhibit other NAD+-dependent processes. NAD+ exerts P2 purinergic receptor-dependent inhibition of smooth muscle contraction. Indiscriminate blockade of the P2 purinergic receptors with suramin abrogated rucaparib-induced vasodilation in rat arterial tissue without affecting ML-9-evoked dilation, although the specific receptor subtypes responsible have not been unequivocally identified. Furthermore, dorsal window chamber and real time tumor vessel perfusion analyses in PARP-1-/- mice indicate a potential role for PARP in dilation of tumor-recruited vessels. Finally, rucaparib provoked relaxation in 70% of patient-derived tumor-associated vessels. These data provide tantalising evidence of the complexity of the mechanism underlying rucaparib-mediated vasodilation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Embryonic carcinoma cells are widely used models for studying the mechanisms of proliferation and differentiation occurring during early embryogenesis. We have now investigated how down-regulation of P2X2 and P2X7 receptor expression by RNA interference (RNAi) affects neural differentiation and phenotype specification of P19 embryonal carcinoma cells. Wild-type P19 embryonal carcinoma cells or cells stably expressing shRNAs targeting P2X2 or P2X7 receptor expression were induced to differentiate into neurons and glial cells in the presence of retinoic acid. Silencing of P2X2 receptor expression along differentiation promoted cell proliferation and an increase in the percentage of cells expressing glial-specific GFAP, while the presence of beta-3 tubulin-positive cells diminished at the same time. Proliferation induction in the presence of stable anti-P2X2 receptor RNAi points at a mechanism where glial proliferation is favored over growth arrest of progenitor cells which would allow neuronal maturation. Differently from the P2X2 receptor, inhibition of P2X7 receptor expression during neural differentiation of P19 cells resulted in a decrease in cell proliferation and GFAP expression, suggesting the need of functional P2X7 receptors for the progress of gliogenesis. The results obtained in this study indicate the importance of purinergic signaling for cell fate determination during neural differentiation, with P2X2 and P2X7 receptors promoting neurogenesis and gliogenesis, respectively. The shRNAs down-regulating P2X2 or P2X7 receptor gene expression, developed during this work, present useful tools for studying mechanisms of neural differentiation in other stem cell models. (C) 2012 ISDN. Published by Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Purinergic receptors participate, in almost every cell type, in controlling metabolic activities and many physiological functions including signal transmission, proliferation and differentiation. While most of P2Y receptors induce transient elevations of intracellular calcium concentration by activation of intracellular calcium pools and forward these signals as waves which can also be transmitted into neighboring cells, P2X receptors produce calcium spikes which also include activation of voltage-operating calcium channels. P2Y and P2X receptors induce calcium transients that activate transcription factors responsible for the progress of differentiation through mediators including calmodulin and calcineurin. Expression of P2X2 as well as of P2X7 receptors increases in differentiating neurons and glial cells, respectively. Gene expression silencing assays indicate that these receptors are important for the progress of differentiation and neuronal or glial fate determination. Metabotropic receptors, mostly P2Y1 and P2Y2 subtypes, act on embryonic cells or cells at the neural progenitor stage by inducing proliferation as well as by regulation of neural differentiation through NFAT translocation. The scope of this review is to discuss the roles of purinergic receptor-induced calcium spike and wave activity and its codification in neurodevelopmental and neurodifferentiation processes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Activation of protein kinase C (PKC) causes multiple effects on adenylyl cyclase (AC), (i) an inhibition of (hormone) receptor/G$\sb{\rm s}$ coupling, consistent with PKC modification of the receptor and (ii) a postreceptor sensitization consistent with a PKC-mediated modification of the stimulatory (G$\sb{\rm s}$) or inhibitory (G$\sb{\rm i}$) G-proteins or the catalyst (C) of AC. In L cells expressing the wild-type beta-adrenergic receptor ($\beta$AR) 4-$\beta$ phorbol 12-myristate-13-acetate (PMA) caused 2-3-fold increases in the K$\sb{\rm act}$ and V$\sb{\rm max}$ for epinephrine-stimulated AC activity and an attenuation of GTP-mediated inhibition of AC. Deletion of a concensus site for PKC phosphorylation (amino acids 259-262) from the $\beta$AR eliminated the PMA-induced increase in the K$\sb{\rm act}$, but had no effect on the other actions of PMA. PMA also increased the K$\sb{\rm act}$ and V$\sb{\rm max}$ for prostaglandin E$\sb1$ (PGE$\sb1$)-stimulated AC and the V$\sb{\rm max}$ for forskolin-stimulated AC. Maximal PMA-induced sensitizations were observed when AC was assayed in the presence of 10 $\mu$M GTP and 0.3 mM (Mg$\sp{++}$).^ Liao et al. (J. Biol. Chem. 265:11273-11284 (1990)) have shown that the P$\sb2$ purinergic receptor agonist ATP stimulates hydrolysis of 4,5 inositol bisphosphate (PIP$\sb2$) by phospholipase C (PLC) in L cells. To determine if agonists that stimulate PLC and PMA had similar effects on AC function we compared the effects of ATP and PMA. ATP caused a rapid 50-150% sensitization of PGE$\sb1$-, epinephrine-, and forskolin-stimulated AC activity with an EC$\sb{50}$ of 3 $\mu$M ATP. The sensitization was similar (i.e. Mg$\sp{++}$ and GTP sensitivity) to that caused by 10 nM PMA. However, unlike PMA ATP did not affect the K$\sb{\rm act}$ for hormone-stimulated AC and its effects were unaltered by down-regulation of PKCs following long term PMA treatment. Our results demonstrate that a PKC concensus site in the $\beta$AR, is required for the PMA-induced decrease in receptor/G$\sb{\rm s}$ coupling. Our data also indicate that activation of P$\sb2$ purinergic receptors by ATP may be important in the sensitization of AC in L cells. The mechanism behind this effect remains to be determined. ^