2 resultados para Puffballs


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Homobasidiomycete fungi display many complex fruiting body morphologies, including mushrooms and puffballs, but their anatomical simplicity has confounded efforts to understand the evolution of these forms. We performed a comprehensive phylogenetic analysis of homobasidiomycetes, using sequences from nuclear and mitochondrial ribosomal DNA, with an emphasis on understanding evolutionary relationships of gilled mushrooms and puffballs. Parsimony-based optimization of character states on our phylogenetic trees suggested that strikingly similar gilled mushrooms evolved at least six times, from morphologically diverse precursors. Approximately 87% of gilled mushrooms are in a single lineage, which we call the “euagarics.” Recently discovered 90 million-year-old fossil mushrooms are probably euagarics, suggesting that (i) the origin of this clade must have occurred no later than the mid-Cretaceous and (ii) the gilled mushroom morphology has been maintained in certain lineages for tens of millions of years. Puffballs and other forms with enclosed spore-bearing structures (Gasteromycetes) evolved at least four times. Derivation of Gasteromycetes from forms with exposed spore-bearing structures (Hymenomycetes) is correlated with repeated loss of forcible spore discharge (ballistospory). Diverse fruiting body forms and spore dispersal mechanisms have evolved among Gasteromycetes. Nevertheless, it appears that Hymenomycetes have never been secondarily derived from Gasteromycetes, which suggests that the loss of ballistospory has constrained evolution in these lineages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the development and improvement of techniques for molecular studies and their subsequent application to the systematic, significant changes occurred in the classification of gasteroid fungi. The genus Morganella belongs to the family Lycoperdaceae, and is characterized mainly by lignicolous habit and presence of paracapilicium. Recent data demonstrate the discovery of new species for the group and the existence of a wide variety of species occurring in tropical ecosystems. However, the phylogenetic relationships of the genus, as well as the taxonomic classification, still require revisions to be better understood, the literature studies that address this issue are still very scarce. Thus, the objective of this study was to conduct studies of molecular phylogeny with species of the genus Morganella, to enhance understanding of the phylogeny of the group by including tropical species data. For this, the specimens used both for DNA extractions as for morphological review were obtained from Brazilian and foreign herbaria. For morphological analysis were observed characters relevant to the group's taxonomy. For phylogenetic analysis the Maximum Parsimony and Bayesian Analyzes were used, using the internal transcribed spacer (ITS) of nuclear ribosomal DNA. In phylogenetic analyzes, representatives from Morganella form a monophyletic clade with good support value and based on these results the genus should not be included as subgenus of Lycoperdon. The analysis indicated that M. pyriformis was not grouped with other representatives of Morganella, and therefore should not be included in the group as representative of Apioperdon subgenus because it is a Lycoperdon representative. Moreover, M. fuliginea, M. nuda, M. albostipitata, M. velutina, M. subincarnata are grouped with high support values within the genus Morganella. Morganella arenicola based on morphological and molecular studies does not aggregate in Morganella. Morganella nuda was grouped with M. fuliginea giving indications that can be treated as an intraspecific variation. The results of the analyzes favor to a better understanding of the species of Morganella. However, additional studies using a greater number of species, as well as other molecular markers are needed for a better understanding of the phylogenetic of Morganella.