964 resultados para Preferred Walking Pace


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The term self-selected (i.e., individual or comfortable walking pace or speed) is commonly used in the literature (Frost, Dowling, Bar-Or, & Dyson, 1997; Jeng, Liao, Lai, & Hou, 1997; Wergel-Kolmert & Wohlfart, 1999; Maltais, Bar-Or, Pienynowski, & Galea, 2003; Browning & Kram, 2005; Browning, Baker, Herron, & Kram, 2006; Hills, Byrne, Wearing, & Armstrong, 2006) and is identified as the most efficient walking speed, with increased efficiency defined by lower oxygen uptake (VO^sub 2^) per unit mechanical work (Hoyt & Taylor, 1981; Taylor, Heglund, & Maloiy, 1982; Hreljac, 1993). [...] assessing individual and group differences in metabolic energy expenditure using oxygen uptake requires individuals to be comfortable with, and able to accommodate to, the equipment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Gait patterns have been widely studied in different fields of science for their particular characteristics. A dynamic approach of human locomotion considers walking and running as two stable behaviors adopted spontaneously under certain levels and natures of constraints. When no constraints are imposed, people naturally prefer to walk at the typical speed (i.e., around 4.5 km.h-1) that minimizes metabolic energy cost. The preferred walking speed (PWS) is also known to be an indicator of mobility and an important clinical factor in tracking impairements in motor behaviors. When constrained to move at higher speeds (e.g., being late), people naturally switch their preference to running for similar optimization reasons (e.g., physiological, biomechanical, perceptual, attentionnal costs). Indeed, the preferred transition speed (PTS) marks the natural seperation between walking and running and consistently falls within a speed range around 7.5 km.h-1. This chapter describes the constraint-dependant spontaneous organisation of the locomotor system, specifically on the walk-to-run speed continuum. We provide examples of the possibility of long-term adaptations of preferred behaviors to specific constraints such as factors related to traditional clothing or practice. We use knowledge from studies on preferred behaviors and on the relationship between affect and exercise adherence as a backdrop to prescribing a walk exercise program with an emphasis on populations with overweight or obesity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Visual reaction time (RT) was measured in 10 older men (mean age, 71.1 years) and gender-matched controls (mean age, 26.3 years) when standing (single task) and when walking on a motor-driven treadmill (dual task). There were 90 quasirandomly presented trials over 15 min in each condition. Longer mean and median RTs were observed in the dual task compared to the single task. Older males had significantly slower mean and median RTs (315 and 304 ms, respectively) than the younger group (273 and 266 ms, respectively) in both task conditions. There were no age or condition effects on with in-subject variability. Both groups showed a trend of increasing RT over the 90 single task trials but when walking only the younger group slowed. These novel findings demonstrate high but sustained attention by older adults when walking. It is proposed that the motor task's attentional demands might contribute to their slower preferred walking speed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Purpose. Fatigue has been pointed as a fall risk in the elderly; however, the effects of prolonged gait on neuromuscular recruitment and on its pattern remain unknown. The aim of this study was to evaluate the effects of prolonged gait on neuromuscular recruitment levels and spatial-temporal gait variables. Methods. Eight healthy older women (age: 72.63 ± 6.55 years) walked at their preferred walking speed for twenty minutes on a treadmill. The Root Mean Square (RMS) from the vastus-lateralis, femoral biceps, tibialis anterior and lateral gastrocnemius muscles were determined at the first and last minute of the test during the moments of Heel Strike (HS), Terminal Stance and Terminal Swing (TS). In addition, coactivation in the knee and ankle as well as the stride cadence and length were measured in the test. The two RMS data (taken at the first and last minute) were compared by means of a Student's t-test. Results. Twenty minutes of walking induced fatigue in the subjects, as observed through an increase in RMS, notably during the HS and TS. Coactivation was also influenced by the prolonged gait test. The only gait phase where a risk of falling was enhanced was the HS. Nonetheless, subjects developed strategies to maintain a safe motor pattern, which was evidenced by an increase in stride length and a decrease in stride cadence. Conclusion. Tests lasting just twenty minutes on a treadmill were enough to induce fatigue in older adults. However, the level of fatigue was not enough to present a danger or fall risk to elderly individuals.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The complex process of gait is rendered partially automatic by central pattern generators (CPGs). To further our understanding of their role in gait control in healthy subjects, we applied a paradigm of anti-phase, or syncopated, movement to gait. To provide a context for our results, we reviewed the literature on in-phase, or synchronized, gait. The review results are as follows. Auditory cueing increased step/stride rate for older subjects, but not younger. Stride rate variability decreased for younger subjects, perhaps because the metronome’s cue acted as a temporal ‘anchor point’ for each step. Step width increased in half of the treadmill studies, but none of the overground ones, suggesting a cumulative effect of the attentional demands of synchronizing gait while on a treadmill. Time series analysis revealed that the α exponent was the most sensitive parameter reported, decreasing toward anti-persistence in almost all cued-gait studies. This project compares in-phase (IN) and anti-phase gait (ANTI) in young and old healthy subjects. We expected gait to be less disrupted during ANTI trials at preferred speed, when the facilitating effect of CPGs would be strongest. The measures step time variability, jerk index, and harmonic ratio quantified gait perturbation: none indicated that ANTI was easiest at preferred walking speed. Surprisingly, the gait of older subjects was no more perturbed than that of younger subjects. When they successfully matched the pace of the beat, they unwittingly synchronized to it. The temporal relationship of their steps to the beat was the same in the IN and ANTI conditions. Younger subjects, visibly struggling during ANTI trials, were able to walk in syncopation. This result suggests that cognitive resources available only to the younger group are required to resist synchronizing to the beat.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose. To investigate evidence-based visual field size criteria for referral of low-vision (LV) patients for mobility rehabilitation. Methods. One hundred and nine participants with LV and 41 age-matched participants with normal sight (NS) were recruited. The LV group was heterogeneous with diverse causes of visual impairment. We measured binocular kinetic visual fields with the Humphrey Field Analyzer and mobility performance on an obstacle-rich, indoor course. Mobility was assessed as percent preferred walking speed (PPWS) and number of obstacle-contact errors. The weighted kappa coefficient of association (κr) was used to discriminate LV participants with both unsafe and inefficient mobility from those with adequate mobility on the basis of their visual field size for the full sample and for subgroups according to type of visual field loss and whether or not the participants had previously received orientation and mobility training. Results. LV participants with both PPWS <38% and errors >6 on our course were classified as having inadequate (inefficient and unsafe) mobility compared with NS participants. Mobility appeared to be first compromised when the visual field was less than about 1.2 steradians (sr; solid angle of a circular visual field of about 70° diameter). Visual fields <0.23 and 0.63 sr (31 to 52° diameter) discriminated patients with at-risk mobility for the full sample and across the two subgroups. A visual field of 0.05 sr (15° diameter) discriminated those with critical mobility. Conclusions. Our study suggests that: practitioners should be alert to potential mobility difficulties when the visual field is less than about 1.2 sr (70° diameter); assessment for mobility rehabilitation may be warranted when the visual field is constricted to about 0.23 to 0.63 sr (31 to 52° diameter) depending on the nature of their visual field loss and previous history (at risk); and mobility rehabilitation should be conducted before the visual field is constricted to 0.05 sr (15° diameter; critical).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A dynamical systems approach to the study of locomotor intralimb coordination in those with hemiparesis led to an examination of the utility of the shank-thigh relative phase (RP) as a collective variable and the identification of potential constraints that may shape this coordination. Eighteen non-disabled individuals formed three groups matched to the age and gender of six participants with chronic right hemiparesis. The three groups differed in the constraints imposed on their walking: (1) walking at their preferred walking speed; (2) walking as slowly as those with hemiparesis; and, (3) walking slowly with a right ankle-foot orthosis (AFO). The results revealed an asymmetry in intralimb coordination between the unaffected and affected leg of those with hemiparesis localized to the latter third of the gait cycle when the limb is advanced from the end of stance to the reestablishment of a new stance. Walking slowly with or without an AFO resulted in no measureable effect in the non-disabled, but accounts for 22% of the variance in the intralimb coordination of the hemiplegic's affected limb and 16% in the unaffected limb. The AFO offered little additional contribution. These results derive from shank-thigh RP that is shown to provide more information about intralimb coordination than knee angle displacement. Implications for these results and the use of RP for rehabilitation are discussed. (C) 2000 Elsevier B.V. B.V. All rights reserved. PsycINFO classification. 3297. 2330.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mobile and wearable computers present input/output prob-lems due to limited screen space and interaction techniques. When mobile, users typically focus their visual attention on navigating their environment - making visually demanding interface designs hard to operate. This paper presents two multimodal interaction techniques designed to overcome these problems and allow truly mobile, 'eyes-free' device use. The first is a 3D audio radial pie menu that uses head gestures for selecting items. An evaluation of a range of different audio designs showed that egocentric sounds re-duced task completion time, perceived annoyance, and al-lowed users to walk closer to their preferred walking speed. The second is a sonically enhanced 2D gesture recognition system for use on a belt-mounted PDA. An evaluation of the system with and without audio feedback showed users' ges-tures were more accurate when dynamically guided by au-dio-feedback. These novel interaction techniques demon-strate effective alternatives to visual-centric interface de-signs on mobile devices.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: Knowledge about the relationships between micro-scale environmental factors and older adults' walking for transport is limited and inconsistent. This is probably due to methodological limitations, such as absence of an accurate neighborhood definition, lack of environmental heterogeneity, environmental co-variation, and recall bias. Furthermore, most previous studies are observational in nature. We aimed to address these limitations by investigating the effects of manipulating photographs on micro-scale environmental factors on the appeal of a street for older adults' transportation walking. Secondly, we used latent class analysis to examine whether subgroups could be identified that have different environmental preferences for transportation walking. Thirdly, we investigated whether these subgroups differed in socio-demographic, functional and psychosocial characteristics, current level of walking and environmental perceptions of their own street.

METHODS: Data were collected among 1131 Flemish older adults through an online (n = 940) or an interview version of the questionnaire (n = 191). This questionnaire included a choice-based conjoint exercise with manipulated photographs of a street. These manipulated photographs originated from one panoramic photograph of an existing street that was manipulated on nine environmental attributes. Participants chose which of two presented streets they would prefer to walk for transport.

RESULTS: In the total sample, sidewalk evenness had by far the greatest appeal for transportation walking. The other environmental attributes were less important. Four subgroups that differed in their environmental preferences for transportation walking were identified. In the two largest subgroups (representing 86% of the sample) sidewalk evenness was the most important environmental attribute. In the two smaller subgroups (each comprising 7% of the sample), traffic volume and speed limit were the most important environmental attributes for one, and the presence of vegetation and a bench were the most important environmental attributes for the other. This latter subgroup included a higher percentage of service flat residents than the other subgroups.

CONCLUSIONS: Our results suggest that the provision of even sidewalks should be considered a priority when developing environmental interventions aiming to stimulate older adults' transportation walking. Natural experiments are needed to confirm whether our findings can be translated to real environments and actual transportation walking behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Altered mechanical properties of the heel pad have been implicated in the development of plantar heel pain. However, the in vivo properties of the heel pad during gait remain largely unexplored in this cohort. The aim of the current study was to characterise the bulk compressive properties of the heel pad in individuals with and without plantar heel pain while walking. ---------- Methods: The sagittal thickness and axial compressive strain of the heel pad were estimated in vivo from dynamic lateral foot radiographs acquired from nine subjects with unilateral plantar heel pain and an equivalent number of matched controls, while walking at their preferred speed. Compressive stress was derived from simultaneously acquired plantar pressure data. Principal viscoelastic parameters of the heel pad, including peak strain, secant modulus and energy dissipation (hysteresis), were estimated from subsequent stress–strain curves.---------- Findings: There was no significant difference in loaded and unloaded heel pad thickness, peak stress, peak strain, or secant and tangent modulus in subjects with and without heel pain. However, the fat pad of symptomatic feet had a significantly lower energy dissipation ratio (0.55 ± 0.17 vs. 0.69 ± 0.08) when compared to asymptomatic feet (P < .05).---------- Interpretation: Plantar heel pain is characterised by reduced energy dissipation ratio of the heel pad when measured in vivo and under physiologically relevant strain rates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There has been no direct attempt to evaluate whether gait performed overground and on a treadmill is the same for lower limb amputees. A multiple case study approach was adopted to explore the degenerate movement behavior displayed by three male amputees. Participants walked overground at a self-selected preferred pace and when this speed was enforced on a treadmill (50 stride cycles per condition). The extremities of motion (i.e., maximum flexion) for the hip and knee joints differed between conditions (0.2–3.8°). For two participants, the temporal asymmetry of gait was reduced on the treadmill. Initial data suggest that research on amputees simulating overground walking on a treadmill might need to be interpreted with some caution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aetiology behind overuse injuries such as stress fractures is complex and multi-factorial. In sporting events where the loading is likely to be uneven (e.g. hurdling and jumps), research has suggested that the frequency of stress fractures seems to favour the athlete’s dominant limb. The tendency for an individual to have a preferred limb for voluntary motor acts makes limb selection a possible factor behind the development of unilateral overuse injuries, particularly when repeatedly used during high loading activities. The event of sprint hurdling is well suited for the study of loading asymmetry as the hurdling technique is repetitive and the limb movement asymmetrical. Of relevance to this study is the high incidence of Navicular Stress Fractures (NSF) in hurdlers, with suggestions there is a tendency for the fracture to develop in the trail leg foot, although this is not fully accepted. The Ground Reaction Force (GRF) with each foot contact is influenced by the hurdle action, with research finding step-to-step loading variations. However, it is unknown if this loading asymmetry extends to individual forefoot joints, thereby influencing stress fracture development. The first part of the study involved a series of investigations using a commercially available matrix style in-shoe sensor system (FscanTM, Tekscan Inc.). The suitability of insole sensor systems and custom made discrete sensors for use in hurdling-related training activities was assessed. The methodology used to analyse foot loading with each technology was investigated. The insole and discrete sensors systems tested proved to be unsuitable for use during full pace hurdling. Instead, a running barrier task designed to replicate the four repetitive foot contacts present during hurdling was assessed. This involved the clearance of a series of 6 barriers (low training hurdles), place in a straight line, using 4 strides between each. The second part of the study involved the analysis of "inter-limb" and "within foot loading asymmetries" using stance duration as well as vertical GRF under the Hallux (T1), the first metatarsal head (M1) and the central forefoot peak pressure site (M2), during walking, running, and running with barrier clearances. The contribution to loading asymmetry that each of the four repetitive foot contacts made during a series of barrier clearances was also assessed. Inter-limb asymmetry, in forefoot loading, occurred at discrete forefoot sites in a non-uniform manner across the three gait conditions. When the individual barrier foot contacts were compared, the stance duration was asymmetrical and the proportion of total forefoot load at M2 was asymmetrical. There were no significant differences between the proportion of forefoot load at M1, compared to M2; for any of the steps involved in the barrier clearance. A case study testing experimental (discrete) sensors during full pace sprinting and hurdling found that during both gait conditions, the trail limb experienced the greater vertical GRF at M1 and M2. During full pace hurdling, increased stance duration and vertical loading was a characteristic of the trail limb hurdle foot contacts. Commercially available in-shoe systems are not suitable for on field assessment of full pace hurdling. For the use of discrete sensor technology to become commonplace in the field, more robust sensors need to be developed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Despite the emerging use of treadmills integrated with pressure platforms as outcome tools in both clinical and research settings, published evidence regarding the measurement properties of these new systems is limited. This study evaluated the within– and between–day repeatability of spatial, temporal and vertical ground reaction forces measured by a treadmill system instrumented with a capacitance–based pressure platform. Methods Thirty three healthy adults (mean age, 21.5 ± 2.8 years; height, 168.4 ± 9.9 cm; and mass, 67.8 ± 18.6 kg), walked barefoot on a treadmill system (FDM–THM–S, Zebris Medical GmbH) on three separate occasions. For each testing session, participants set their preferred pace but were blinded to treadmill speed. Spatial (foot rotation, step width, stride and step length), temporal (stride and step times, duration of stance, swing and single and double support) and peak vertical ground reaction force variables were collected over a 30–second capture period, equating to an average of 52 ± 5 steps of steady–state walking. Testing was repeated one week following the initial trial and again, for a third time, 20 minutes later. Repeated measures ANOVAs within a generalized linear modelling framework were used to assess between–session differences in gait parameters. Agreement between gait parameters measured within the same day (session 2 and 3) and between days (session 1 and 2; 1 and 3) were evaluated using the 95% repeatability coefficient. Results There were statistically significant differences in the majority (14/16) of temporal, spatial and kinetic gait parameters over the three test sessions (P < .01). The minimum change that could be detected with 95% confidence ranged between 3% and 17% for temporal parameters, 14% and 33% for spatial parameters, and 4% and 20% for kinetic parameters between days. Within–day repeatability was similar to that observed between days. Temporal and kinetic gait parameters were typically more consistent than spatial parameters. The 95% repeatability coefficient for vertical force peaks ranged between ± 53 and ± 63 N. Conclusions The limits of agreement in spatial parameters and ground reaction forces for the treadmill system encompass previously reported changes with neuromuscular pathology and footwear interventions. These findings provide clinicians and researchers with an indication of the repeatability and sensitivity of the Zebris treadmill system to detect changes in common spatiotemporal gait parameters and vertical ground reaction forces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although accelerometers are extensively used for assessing gait, limited research has evaluated the concurrent validity of these devices on less predictable walking surfaces or the comparability of different methods used for gravitational acceleration compensation. This study evaluated the concurrent validity of trunk accelerations derived from a tri-axial inertial measurement unit while walking on firm, compliant and uneven surfaces and contrasted two methods used to remove gravitational accelerations: i) subtraction of the best linear fit from the data (detrending), and; ii) use of orientation information (quaternions) from the inertial measurement unit. Twelve older and twelve younger adults walked at their preferred speed along firm, compliant and uneven walkways. Accelerations were evaluated for the thoracic spine (T12) using a tri-axial inertial measurement unit and an eleven-camera Vicon system. The findings demonstrated excellent agreement between accelerations derived from the inertial measurement unit and motion analysis system, including while walking on uneven surfaces that better approximate a real-world setting (all differences <0.16 m.s−2). Detrending produced slightly better agreement between the inertial measurement unit and Vicon system on firm surfaces (delta range: −0.05 to 0.06 vs. 0.00 to 0.14 m.s−2), whereas the quaternion method performed better when walking on compliant and uneven walkways (delta range: −0.16 to −0.02 vs. −0.07 to 0.07 m.s−2). The technique used to compensate for gravitational accelerations requires consideration in future research, particularly when walking on compliant and uneven surfaces. These findings demonstrate trunk accelerations can be accurately measured using a wireless inertial measurement unit and are appropriate for research that evaluates healthy populations in complex environments.