992 resultados para Precipitation index


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper details a statistical analysis of historical failure data, which focuses on determining the manner in which local climate affects pipe failure rates. It was found that seasonality exists in the data, indicating an affect of local climate on failure rate. Significant variation in failure rates was seen between the months of December and May, especially in February/March, whilst limited variations were seen in other months of the year. Further analysis found that failure rates were strongly correlated with minimum antecedent precipitation index and net evaporation and that climate affected failure rate by influencing soil moisture content. Interaction affects between static attributes of the pipe-environment system and local climate were also investigated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A non-linear perturbation model for river flow forecasting is developed, based on consideration of catchment wetness using an antecedent precipitation index (API). Catchment seasonality, of the form accounted for in the linear perturbation model (the LPM), and non-linear behaviour both in the runoff generation mechanism and in the flow routing processes are represented by a constrained nan-linear model, the NLPM-API. A total of ten catchments, across a range of climatic conditions and catchment area magnitudes, located in China and in other countries, were selected for testing daily rainfall-runoff forecasting with this model. It was found that the NLPM-API model was significantly more efficient than the original linear perturbation model (the LPM). However, restric tion of explicit nan-linearity to the runoff generation process, in the simpler LPM-API form of the model, did not produce a significantly lower value of the efficiency in flood forecasting, in terms of the model efficiency index R-2. (C) 1997 Elsevier Science B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A distinct cold tongue has recently been noticed in the South China Sea during the winter monsoon, with the cold tongue temperature minimum occurring in the January or February. This cold tongue shows signi¯cant links with the Maritime Continent's rainfall during the winter period. The cold tongue and its interaction with the Maritime Continent's weather were studied using Reynolds SST data, wind ¯elds from the NCEP{NCAR reanalysis dataset and the quikSCAT dataset. In addition, rainfall from the GOES Precipitation Index (GPI) for the periods 2000 to 2008 was also used. The propagation of the cold tongue towards the south is explained using wind dynamics and the western boundary current. During the period of strong cold tongue, the surface wind is strong and the western boundary current advects the cold tongue to the south. During the period of strong winds the zonal gradient of SST is high [0.5±C (25 km)¡1]. The cold tongue plays an important role in regulating the climate over the Maritime Continent. It creates a zonal/meridional SST gradient and this gradient ultimately leads in the formation of convection. Hence, two maximum precipitation zones are found in the Maritime Continent, with a zone of relatively lower precipitation between, which coincides with the cold tongue's regions. It was found that the precipitation zones have strong links with the intensity of the cold tongue. During stronger cold tongue periods the precipitation on either side of the cold tongue is considerably greater than during weaker cold tongue periods. The features of convection on the eastern and western sides of the cold tongue behave di®erently. On the eastern side convection is preceded by one day with SST gradient, while on the western side it is four days.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Asian monsoon system, including the western North Pacific (WNP), East Asian, and Indian monsoons, dominates the climate of the Asia-Indian Ocean-Pacific region, and plays a significant role in the global hydrological and energy cycles. The prediction of monsoons and associated climate features is a major challenge in seasonal time scale climate forecast. In this study, a comprehensive assessment of the interannual predictability of the WNP summer climate has been performed using the 1-month lead retrospective forecasts (hindcasts) of five state-of-the-art coupled models from ENSEMBLES for the period of 1960–2005. Spatial distribution of the temporal correlation coefficients shows that the interannual variation of precipitation is well predicted around the Maritime Continent and east of the Philippines. The high skills for the lower-tropospheric circulation and sea surface temperature (SST) spread over almost the whole WNP. These results indicate that the models in general successfully predict the interannual variation of the WNP summer climate. Two typical indices, the WNP summer precipitation index and the WNP lower-tropospheric circulation index (WNPMI), have been used to quantify the forecast skill. The correlation coefficient between five models’ multi-model ensemble (MME) mean prediction and observations for the WNP summer precipitation index reaches 0.66 during 1979–2005 while it is 0.68 for the WNPMI during 1960–2005. The WNPMI-regressed anomalies of lower-tropospheric winds, SSTs and precipitation are similar between observations and MME. Further analysis suggests that prediction reliability of the WNP summer climate mainly arises from the atmosphere–ocean interaction over the tropical Indian and the tropical Pacific Ocean, implying that continuing improvement in the representation of the air–sea interaction over these regions in CGCMs is a key for long-lead seasonal forecast over the WNP and East Asia. On the other hand, the prediction of the WNP summer climate anomalies exhibits a remarkable spread resulted from uncertainty in initial conditions. The summer anomalies related to the prediction spread, including the lower-tropospheric circulation, SST and precipitation anomalies, show a Pacific-Japan or East Asia-Pacific pattern in the meridional direction over the WNP. Our further investigations suggest that the WNPMI prediction spread arises mainly from the internal dynamics in air–sea interaction over the WNP and Indian Ocean, since the local relationships among the anomalous SST, circulation, and precipitation associated with the spread are similar to those associated with the interannual variation of the WNPMI in both observations and MME. However, the magnitudes of these anomalies related to the spread are weaker, ranging from one third to a half of those anomalies associated with the interannual variation of the WNPMI in MME over the tropical Indian Ocean and subtropical WNP. These results further support that the improvement in the representation of the air–sea interaction over the tropical Indian Ocean and subtropical WNP in CGCMs is a key for reducing the prediction spread and for improving the long-lead seasonal forecast over the WNP and East Asia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The instability of cassava culinary quality is a problem in the market. This work had the purpose of evaluating the interference of the productivity, rain precipitation and physical-chemical characteristics on the cooking time of the IAC 576-70 cultivar, from the 6(th) to the 12(th) month after the planting. The physical parameters evaluated were: difficulty in peeling (easy, medium, and hard), difficulty in cutting in long, thin sticks with a manual machine, being those cut in a subjective way. In the analysis of the cooked root, the percentage of water absorbed into the cassava pieces, the color, white points formed inside the pieces of cassava, gel formation around the pieces of cassava, and cooking time were evaluated. The pH, acidity, moisture, ashes, fibers, ether extract, protein, reducing sugars, and starch of the roots were also monthly evaluated. From the results obtained in the present work, it may be concluded that the cassava IAC 576-70, when planted in July, in Botucatu-SP area, must be harvested at the age of nine months, without damage to the productivity, starch level and root cooking, and the harvest could be extended up to ten months. The producers should follow the sum of precipitation index ten days before the harvest, and this value should be the smallest as it may be and the producers should not harvest when this value is more than 100 mm, in order not to hinder the cooking of the root.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Leptospirosis is a zoonosis which is spread through contamined running water. This contaminations is seriously affected by the flooding which occurs in the area surrounding the Aricanduva river. The transmission of the disease results mainly from the contact of water with soil contaminated by the urine of infected animals. We aimed to conduct an epidemiological survey on Leptospirosis cases in Sao Paulo East Zone area. Method. The analysis conducted in this study was based on data collected from the health authorities of that region close the Aricanduva river between 2007 and 2008 years, which give the rates of confirmed cases, mortality and death from human Leptospirosis. Other information concerned with the relationships among rainfall index, points of flooding and incidence of Leptospirosis. Results: We observed a direct and important water contamination. Records of flooding points and dates of the reported cases in the region showed a direct relationship from which the period of higher rainfall also recorded an increase in cases. The annual record of the city and the region and rainfall regions also presented correlation. Conclusion: The association between the indices of flooding and Leptospirosis cases indicates that preventive measures are necessary to avoid exposing the community. © 2013 Miyazato et al.; licensee BioMed Central Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Este trabalho utilizou os dados de precipitação do período de janeiro de 2000 a setembro de 2007 da torre micrometeorológica localizada na Estação Científica Ferreira Pena (ECFP) em Caxiuanã e foram comparados com o algoritmo 3B42 que combina dados de satélites no canal de microoondas para ajustar aqueles do canal infravermelho. Adicionalmente foi feita uma análise da distribuição temporal e espacial da precipitação na Amazônia Oriental utilizando os dados de cinco algoritmos estimadores de precipitação: O Geostationary Environmental SalellitePrecipitation lndex (GPI); o 3B42; 3A12 e 3A25 que são os algoritmos provenientes dos sensores de microondas e do radar meteorológico à bordo do satélite Tropical Rainfall MeasuringMission (TRMM); e o Global Precipitation Climatology Center (GPCC) de janeiro de 1998 a dezembro de 2007. A comparação entre o algoritmo 3B42 com os dados do pluviógrafo da torre mostrou que o estimador 3B42 superestima a precipitação em relação aos dados da torre para todo o período de estudo. Os períodos mais chuvosos foram os trimestres de março-abril-maio (MAM) e dezembro-janeiro-feveireiro (DJF) e os períodos menos chuvosos foram setembro-outubro-novembro (SON) e junho-julho-agosto (JJA). Esta sazonalidade da precipitação se apresenta principalmente devido à influência da Zona de Convergência Intertropical (ZCIT), que contribui de maneira apreciável para a modulação da estação chuvosa na região. A comparação trimestral entre o algoritmo 3B42 e pluviógrafo da torre, mostra que o algoritmo 3B42 superestimou (subestimou) a precipitação em relação ao pluviógrafo em MAM e JJA (DJF e SON); e DJF é o trimestre que apresenta as estimativas de precipitação com valores mais aproximados a precipitação medida na torre micrometeorológica de Caxiuanã. Na média mensal o 3B42 subestima a precipitação de outubro a janeiro e superestima em relação as dados medidos na torre, de março a agosto. O algoritmo3B42 superestimou (subestimou) a precipitação noturna (matutina e vespertina) do ciclo diurno em relação ao pluviógrafo da torre, nas vizinhanças de Caxiuanã. No entanto ambos estimadores mostraram que em média o horário de maior precipitação é por volta das 1800hora local (HL). Além disso, as análises do ciclo diurno médio sazonal indicam que em DJF nos horários de 0900 HL, 1500 HL e 1800HL têm os valores de precipitação estimada pelo algoritmo3B42 mais aproximados aos valores da precipitação medida pontualmente em Caxiuanã. Os meses de novembro a fevereiro têm um máximo principal de precipitação no período vespertino, tanto na torre como no algoritmo 3B42. No período de maio à julho o horário os máximos diurnos de precipitação passam do período da tarde para os da noite e madrugada,modificando o ciclo diurno em comparação aos demais meses. A comparação entre os cinco algoritmos na Amazônia Oriental mostrou diferentes comportamentos entre os estimadores. O algoritmo GPI subestimou s precipitação em relação aos demais algoritmos na região costeira do Amapá e Guiana Francesa e superestimou na região central da Amazônia. Tanto o algoritmo 3A12 quanto o 3A25 apresentaram menor precipitação que os demais algoritmos. O algoritmo 3842, por ser uma combinação de várias estimativas baseadas no canal de microondas e infravermelho, apresenta padrões semelhantes a Figueroa e Nobre (1990). No entanto, o GPCC mostra menos detalhes na distribuição espacial de precipitação nos lugares onde não há pluviômetros como, por exemplo, no Noroeste do Pará. As diferenças entre os algoritmos aqui considerados podem estar relacionados com as características de cada algoritmo e/ou a metodologia empregada. As comparações pontuais de precipitação de um pluviômetro com a média numa área com dados provenientes de satélites podem ser a explicação para as diferenças entre os estimadores nos trimestres ou ciclo diurno. No entanto não se descartam que essas diferenças sejam devidas à diferente natureza da precipitação entre as subregiões, assim como a existência de diferentes sistemas que modulam o ciclo diurno da precipitação na Amazônia Oriental.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract Background Leptospirosis is a zoonosis which is spread through contamined running water. This contaminations is seriously affected by the flooding which occurs in the area surrounding the Aricanduva river. The transmission of the disease results mainly from the contact of water with soil contaminated by the urine of infected animals. We aimed to conduct an epidemiological survey on Leptospirosis cases in Sao Paulo East Zone area. Method The analysis conducted in this study was based on data collected from the health authorities of that region close the Aricanduva river between 2007 and 2008 years, which give the rates of confirmed cases, mortality and death from human Leptospirosis. Other information concerned with the relationships among rainfall index, points of flooding and incidence of Leptospirosis. Results We observed a direct and important water contamination. Records of flooding points and dates of the reported cases in the region showed a direct relationship from which the period of higher rainfall also recorded an increase in cases. The annual record of the city and the region and rainfall regions also presented correlation. Conclusion The association between the indices of flooding and Leptospirosis cases indicates that preventive measures are necessary to avoid exposing the community.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La tesi è suddivisa in tre parti. Nella prima parte si descrive il sistema dei canali bolognesi che derivano acqua dal bacino montano del Fiume Reno e dal Torrente Savena, e il sistema di gestione e di monitoraggio utilizzato dal Consorzio dei canali di Reno e Savena. Nella seconda parte si illustra una proposta di sistema di visualizzazione dei dati idro-pluviometrici che si sta valutando, assieme al Presidente del Consorzio e ad Arpa, per il monitor che il Consorzio intende installare al fine di illustrare al pubblico il monitoraggio e l’evoluzione degli eventi di piena e di scarsità idrica/siccità. Nella terza parte, infine, si effettuano la stima e un’analisi della correlazione tra due diversi indici di siccità, meteorologica ed idrologica, per il bacino del Reno chiuso a Casalecchio. Il sistema dell’intero bacino del Reno e della rete dei canali cittadini risulta molto complesso. Vista tale complessità del sistema, si è proposto di distinguere uno scenario di piena e uno scenario di magra. Tra le diverse informazioni da visualizzare nel monitor si intendono anche visualizzare informazioni relative alla disponibilità idrica alla scala del bacino in esame. Per questo è stata svolta l’analisi sugli indici di siccità Standard Precipitation Index (SPI) e Streamflow Drought Index per il bacino del Reno chiuso a Casalecchio . Tali indici hanno portato a dei risultati consistenti con le condizioni idro-metereologiche e con le informazioni sugli impatti al suolo disponibili per alcuni degli eventi più significativi presi in esame. In base ai risultati ottenuti è possibile affermare che gli indici SPI e SDI a scala di bacino hanno una buona correlazione che permette di poter considerare anche la sola caratterizzazione pluviometrica per identificare la situazione della disponibilità idrica del fiume a monte dell’opera di presa del Canale di Reno.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper studies the representation of a drought period that affected Central Europe from 1945 to 1949 in the “Twentieth Century Reanalysis” (20CR). We analysed temperature and precipitation fields in 20CR and compared them to other data products. From the monthly precipitation rate at a 20CR grid point in the Swiss Plateau, the Standardised Precipitation Index over six months (SPI6) was calculated and compared with the corresponding index calculated from station data. For additional analyses, 20CR soil moisture, run off, and evaporation data were used. 20CR well reproduces the temperature and precipitation anomalies over Central Europe during this period, although during 1947, the precipitation anomaly is shifted to the east as compared to observations. With respect to the SPI6 index, the agreement between 20CR and station data is good except again for 1947 (conversely, drought was overestimated in 20CR for 1945 and 1949). Low SPI values in 20CR are accompanied by negative soil moisture anomalies and a negative water balance. Thus, apart from the shift in the spatial drought pattern in 1947, the drought is depicted in a realistic way in 20CR.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Instrumental climate data are limited in length and only available with low spatial coverage before the middle of the 20th century. This is too short to reliably determine and interpret decadal and longer scale climate variability and to understand the underlying mechanisms with sufficient accuracy. A proper knowledge of past variability of the climate system is needed to assess the anthropogenic impact on climate and ecosystems, and also important with regard to long-range climate forecasting. Highly-resolved records of past climate variations that extend beyond pre-industrial times can significantly help to understand long-term climate changes and trends. Indirect information on past environmental and climatic conditions can be deduced from climate-sensitive proxies. Large colonies of massive growing tropical reef corals have been proven to sensitively monitor changes in ambient seawater. Rapid skeletal growth, typically ranging between several millimeters to centimeters per year, allows the development of proxy records at sub-seasonal resolution. Stable oxygen isotopic composition and trace elemental ratios incorporated in the aragonitic coral skeleton can reveal a detailed history of past environmental conditions, e.g., sea surface temperature (SST). In general, coral-based reconstructions from the tropical Atlantic region have lagged behind the extensive work published using coral records from the Indian and Pacific Oceans. Difficulties in the analysis of previously utilized coral archives from the Atlantic, typically corals of the genera Montastrea and Siderastrea, have so far exacerbated the production of long-term high-resolution proxy records. The objective of this study is the evaluation of massive fast-growing corals of the species Diploria strigosa as a new marine archive for climate reconstructions from the tropical Atlantic region. For this purpose, coral records from two study sites in the eastern Caribbean Sea (Guadeloupe, Lesser Antilles; and Archipelago Los Roques, Venezuela) were examined. At Guadeloupe, a century-long monthly resolved multi-proxy coral record was generated. Results present the first d18O (Sr/Ca)-SST calibration equations for the Atlantic braincoral Diploria strigosa, that are robust and consistent with previously published values using other coral species from different regions. Both proxies reflect local variability of SST on a sub-seasonal scale, which is a precondition for studying seasonally phase-locked climate variations, as well as track variability on a larger spatial scale (i.e., in the Caribbean and tropical North Atlantic). Coral Sr/Ca reliably records local annual to interannual temperature variations and is higher correlated to in-situ air temperature than to grid-SST. The warming calculated from coral Sr/Ca is concurrent with the strong surface temperature increase at the study site during the past decades. Proxy data show a close relationship to major climate signals from the tropical Pacific and North Atlantic (the El Niño Southern Oscillation (ENSO) and the North Atlantic Oscillation (NAO)) affecting the seasonal cycle of SST in the North Tropical Atlantic (NTA). Coral oxygen isotopes are also influenced by seawater d18O (d18Osw) which is linked to the hydrological cycle, and capture large-scale climate variability in the NTA region better than Sr/Ca. Results from a quantitative comparison between extreme events in the two most prominent modes of external forcing, namely the ENSO and NAO, and respective events recorded in seasonal coral d18O imply that SST variability at the study site is highly linked to Pacific and North Atlantic variability, by this means supporting the assumptions of observational- and model-based studies which suggest a strong impact of ENSO and NAO forcings onto the NTA region through a modulation of trade wind strength in winter. Results from different spectral analysis tools suggest that interannual climate variability recorded by the coral proxies is II largely dictated by Pacific ENSO forcing, whereas at decadal and longer timescales the influence of the NAO is dominan. tThe Archipelago Los Roques is situated in the southeastern Caribbean Sea, north of the Venezuelan coast. Year-to-year variations in monthly resolved coral d18O of a nearcentury- long Diploria strigosa record are significantly correlated with SST and show pronounced multidecadal variations. About half of the variance in coral d18O can be explained by variations in seawater d18O, which can be estimated by calculating the d18Oresidual via subtracting the SST component from measured coral d18O. The d18Oresidual and a regional precipitation index are highly correlated at low frequencies, suggesting that d18Osw variations are primarily atmospheric-driven. Warmer SSTs at Los Roques broadly coincide with higher precipitation in the southeastern Caribbean at multidecadal time scales, effectively strengthening the climate signal in the coral d18O record. The Los Roques coral d18O record displays a strong and statistically significant relationship to different indices of hurricane activity during the peak of the Atlantic hurricane season in boreal summer and is a particularly good indicator of decadal-multidecadal swings in the latter indices. In general, the detection of long-term changes and trends in Atlantic hurricane activity is hampered due to the limited length of the reliable instrumental record and the known inhomogeneity in the observational databases which result from changes in observing practice and technology over the years. The results suggest that coral-derived proxy data from Los Roques can be used to infer changes in past hurricane activity on timescales that extend well beyond the reliable record. In addition, the coral record exhibits a clear negative trend superimposed on the decadal to multidecadal cycles, indicating a significant warming and freshening of surface waters in the genesis region of tropical cyclones during the past decades. The presented coral d18O time series provides the first and, so far, longest continuous coral-based record of hurricane activity. It appears that the combination of both signals (SST and d18Osw) in coral d18O leads to an amplification of large-scale climate signals in the record, and makes coral d18O even a better proxy for hurricane activity than SST alone. Atlantic hurricane activity naturally exhibits strong multidecadal variations that are associated with the Atlantic Multidecadal Oscillation (AMO), the major mode of lowfrequency variability in the North Atlantic Ocean. However, the mechanisms underlying this multidecadal variability remain controversial, primarily because of the limited instrumental record. The Los Roques coral d18O displays strong multidecadal variability with a period of approximately 60 years that is closely related to the AMO, making the Archipelago Los Roques a very sensitive location for studying low-frequency climate variability in the Atlantic Ocean. In summary, the coral records presented in this thesis capture different key climate variables in the north tropical Atlantic region very well, indicating that fast-growing Diploria strigosa corals represent a promising marine archive for further proxy-based reconstructions of past climate variability on a range of time scales.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lately, several researchers have pointed out that climate change is expected to increase temperatures and lower rainfall in Mediterranean regions, simultaneously increasing the intensity of extreme rainfall events. These changes could have consequences regarding rainfall regime, erosion, sediment transport and water quality, soil management, and new designs in diversion ditches. Climate change is expected to result in increasingly unpredictable and variable rainfall, in amount and timing, changing seasonal patterns and increasing the frequency of extreme weather events. Consequently, the evolution of frequency and intensity of drought periods is of most important as in agro-ecosystems many processes will be affected by them. Realising the complex and important consequences of an increasing frequency of extreme droughts at the Ebro River basin, our aim is to study the evolution of drought events at this site statistically, with emphasis on the occurrence and intensity of them. For this purpose, fourteen meteorological stations were selected based on the length of the rainfall series and the climatic classification to obtain a representative untreated dataset from the river basin. Daily rainfall series from 1957 to 2002 were obtained from each meteorological station and no-rain period frequency as the consecutive numbers of days were extracted. Based on this data, we study changes in the probability distribution in several sub-periods. Moreover we used the Standardized Precipitation Index (SPI) for identification of drought events in a year scale and then we use this index to fit log-linear models to the contingency tables between the SPI index and the sub-periods, this adjusted is carried out with the help of ANOVA inference.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effects of climate change on human societies have become the focus of many researchers for their research. Understanding weather patterns (circulation of the atmosphere, precipitation, temperature) is essences for predicting extreme weather, but analyze how these extreme events act in our society and look for ways to reduce the impact caused by these events is the great challenge. Using a concept very in the humanities and social sciences to understand these impacts and the adaptation of the society's vulnerability. The objective of this work is to develop and apply a methodology for evaluating fining scale and quantify the vulnerability of the Brazilian Northeast to climatic extremes, developing a methodology that combines aspects of vulnerability to drought, as well as socioeconomic and climatic indicators used to assess exposure, ability to adaptation and the sensitivity of geographical microregions of the region. The assessment of the susceptibility or degree of exposure to risk is the regional using the SPI (Standardized Precipitation Index) by the degree of magnitude dried (MD), the rate of precipitation such as PCD (Precipitation Concentration Degree) and PCP (Precipitation Period Concentration) helped characterize and regional climatology, these indices showed satisfactory results in the pilot study of Rio Grande do Norte to assess the degree of exposure to drought. Regarding sensitivity agricultural / livestock multivariate statistical technique to factor analysis showed acceptable results for the proposed model using data for the period 1990-1999 (P1). The application of the analysis of vulnerability considering the adaptive capacity, as the adaptive disability have almost similar results with much of the region's vulnerability to extreme south of Bahia state as a part of the semiarid region has a degree of vulnerability among moderate and mean

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Several hydrographic surveys were carried out in Pearl Lagoon, Nicaragua between april 1995 and december 1997 under the DIPAL (Proyecto para el Desarrollo Integral de la Pesca Artesanal en la Región Autónoma del Atlántico Sur) project. Surface temperature, salinity, dissolved oxygen and turbidity have been measured in 88 hydrographic campaigns. The annual cycle shows maximum and minimum temperatures in May (29.4 °C) and December (25.6 °C) respectively, maximum salinity (25.6 °C) in April, one month before the thermal peak, and minimum salinities (2‰) between July and August, when the annual precipitation index attains its seasonal maximum in the study area. In the case of dissolved O2 the maximum values of oxygen saturation were observed between March and May (90%), when the water turbidity in the lagoon is at its lowest and freshwater contributions from the rivers attains its minimum value. During the rainy season, in the second half of the year, there is an important decrease in oxygen contents, mainly as a consequence of the degradation of organic matter of riverine origin.