79 resultados para Potyvirus


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Certain plant viruses encode suppressors of posttranscriptional gene silencing (PTGS), an adaptive antiviral defense response that limits virus replication and spread. The tobacco etch potyvirus protein, helper component-proteinase (HC-Pro), suppresses PTGS of silenced transgenes. The effect of HC-Pro on different steps of the silencing pathway was analyzed by using both transient Agrobacterium tumefaciens-based delivery and transgenic systems. HC-Pro inactivated PTGS in plants containing a preexisting silenced β-glucuronidase (GUS) transgene. PTGS in this system was associated with both small RNA molecules (21–26 nt) corresponding to the 3′ proximal region of the transcribed GUS sequence and cytosine methylation of specific sites near the 3′ end of the GUS transgene. Introduction of HC-Pro into these plants resulted in loss of PTGS, loss of small RNAs, and partial loss of methylation. These results suggest that HC-Pro targets a PTGS maintenance (as opposed to an initiation or signaling) component at a point that affects accumulation of small RNAs and methylation of genomic DNA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RNA-mediated, posttranscriptional gene silencing has been determined as the molecular mechanism underlying transgenic virus resistance in many plant virus-dicot host plant systems. In this paper we show that transgenic virus resistance in sugarcane (Saccharum spp. hybrid) is based on posttranscriptional gene silencing. The resistance is derived from an untranslatable form of the sorghum mosaic potyvirus strain SCH coat protein (CP) gene. Transgenic sugarcane plants challenged with sorghum mosaic potyvirus strain SCH had phenotypes that ranged from fully susceptible to completely resistant, and a recovery phenotype was also observed. Clones derived from the same transformation event or obtained after vegetative propagation could display different levels of virus resistance, suggesting the involvement of a quantitative component in the resistance response. Most resistant plants displayed low or undetectable steady-state CP transgene mRNA levels, although nuclear transcription rates were high. Increased DNA methylation was observed in the transcribed region of the CP transgenes in most of these plants. Collectively, these characteristics indicate that an RNA-mediated, homology-dependent mechanism is at the base of the virus resistance. This work extends posttranscriptional gene silencing and homology-dependent virus resistance, so far observed only in dicots, to an agronomically important, polyploid monocot.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Insertion of introns into cloned cDNA of two isolates of the plant potyvirus pea seedborne mosaic virus facilitated plasmid amplification in Escherichia coli. Multiple stop codons in the inserted introns interrupted the open reading frame of the virus cDNA, thereby terminating undesired translation of virus proteins in E. coli. Plasmids containing the full-length virus sequences, placed under control of the cauliflower mosaic virus 35S promoter and the nopaline synthase termination signal, were stable and easy to amplify in E. coli if one or more introns were inserted into the virus sequence. These plasmids were infectious when inoculated mechanically onto Pisum sativum leaves. Examination of the cDNA-derived viruses confirmed that intron splicing of in vivo transcribed pre-mRNA had occurred as predicted, reestablishing the virus genome sequences. Symptom development and virus accumulation of the cDNA derived viruses and parental viruses were identical. It is proposed that intron insertion can be used to facilitate manipulation and amplification of cloned DNA fragments that are unstable in, or toxic to, E. coli. When transcribed in vivo in eukaryotic cells, the introns will be eliminated from the sequence and will not interfere with further analysis of protein expression or virus infection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sequence diversity in the coat protein coding region of Australian strains of Johnsongrass mosaic virus (JGMV) was investigated. Field isolates were sampled during a seven year period from Johnsongrass, sorghum and corn across the northern grain growing region. The 23 isolates were found to have greater than 94% nucleotide and amino acid sequence identity. The Australian isolates and two strains from the U.S.A. had about 90% nucleotide sequence identity and were between 19 and 30% different in the N-terminus of the coat protein. Two amino acid residues were found in the core region of the coat protein in isolates obtained from sorghum having the Krish gene for JGMV resistance that differed from those found in isolates from other hosts which did not have this single dominant resistance gene. These amino acid changes may have been responsible for overcoming the resistance conferred by the Krish gene for JGMV resistance in sorghum. The identification of these variable regions was essential for the development of durable pathogen-derived resistance to JGMV in sorghum.