952 resultados para Post-Light™ Ion Semiconductor Sequencing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitrogen-doped TiO2 nanofibres of anatase and TiO2(B) phases were synthesised by a reaction between titanate nanofibres of a layered structure and gaseous NH3 at 400–700 °C, following a different mechanism than that for the direct nitrogen doping from TiO2. The surface of the N-doped TiO2 nanofibres can be tuned by facial calcination in air to remove the surface-bonded N species, whereas the core remains N doped. N-Doped TiO2 nanofibres, only after calcination in air, became effective photocatalysts for the decomposition of sulforhodamine B under visible-light irradiation. The surface-oxidised surface layer was proven to be very effective for organic molecule adsorption, and the activation of oxygen molecules, whereas the remaining N-doped interior of the fibres strongly absorbed visible light, resulting in the generation of electrons and holes. The N-doped nanofibres were also used as supports of gold nanoparticle (Au NP) photocatalysts for visible-light-driven hydroamination of phenylacetylene with aniline. Phenylacetylene was activated on the N-doped surface of the nanofibres and aniline on the Au NPs. The Au NPs adsorbed on N-doped TiO2(B) nanofibres exhibited much better conversion (80 % of phenylacetylene) than when adsorbed on undoped fibres (46 %) at 40 °C and 95 % of the product is the desired imine. The surface N species can prevent the adsorption of O2 that is unfavourable for the hydroamination reaction, and thus, improve the photocatalytic activity. Removal of the surface N species resulted in a sharp decrease of the photocatalytic activity. These photocatalysts are feasible for practical applications, because they can be easily dispersed into solution and separated from a liquid by filtration, sedimentation or centrifugation due to their fibril morphology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To objectively assess daily light exposure and physical activity levels in myopic and emmetropic children. Methods: One hundred and two children (41 myopes and 61 emmetropes) aged 10 to 15 years old had simultaneous objective measures of ambient light exposure and physical activity collected over a 2 week period during school term, using a wrist worn actigraphy device (Actiwatch-2). Measures of visible light illuminance and physical activity were captured every 30 seconds, 24 hours a day over this period. Mean hourly light exposure and physical activity for weekdays and weekends were examined. To ensure that seasonal variations didn’t confound comparisons, the light and activity data of the 41 myopes, was compared with 41 age and gender matched emmetropes who wore the Actiwatch over the same two week period. Results: Mean light exposure and physical activity for all 101 children with valid data exhibited significant changes with time of day and day of the week (p<0.0001). On average greater daily light exposure occurred on weekends compared to weekdays (p<0.05), and greater physical activity occurred on weekdays compared to weekends (p<0.01). Myopic children (n = 41, mean daily light exposure 915 ± 519 lux) exhibited significantly lower average light exposure compared to 41 age and gender matched emmetropic children (1272 ± 625 lux, p<0.01). The amount of daily time spent in bright light conditions (>1000 lux) was also significantly greater in emmetropes (127 ± 51 minutes) compared to myopes (91 ± 44 minutes, p<0.001). No significant differences were found between the average daily physical activity levels of myopes and emmetropes (p>0.05). Conclusions: Myopic children exhibit significantly lower daily light exposure, but no significant difference in physical activity compared to emmetropic children. This suggests the important factor involved in documented associations between myopia and outdoor activity is likely exposure to bright outdoor light rather than greater physical activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fire safety has become an important part in structural design due to the ever increasing loss of properties and lives during fires. Conventionally the fire rating of load bearing wall systems made of Light gauge Steel Frames (LSF) is determined using fire tests based on the standard time-temperature curve in ISO834 [1]. However, modern commercial and residential buildings make use of thermoplastic materials, which mean considerably high fuel loads. Hence a detailed fire research study into the fire performance of LSF walls was undertaken using realistic design fire curves developed based on Eurocode parametric [2] and Barnett’s BFD [3] curves using both full scale fire tests and numerical studies. It included LSF walls without cavity insulation, and the recently developed externally insulated composite panel system. This paper presents the details of finite element models developed to simulate the full scale fire tests of LSF wall panels under realistic design fires. Finite element models of LSF walls exposed to realistic design fires were developed, and analysed under both transient and steady state fire conditions using the measured stud time-temperature curves. Transient state analyses were performed to simulate fire test conditions while steady state analyses were performed to obtain the load ratio versus time and failure temperature curves of LSF walls. Details of the developed finite element models and the results including the axial deformation and lateral deflection versus time curves, and the stud failure modes and times are presented in this paper. Comparison with fire test results demonstrate the ability of developed finite element models to predict the performance and fire resistance ratings of LSF walls under realistic design fires.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Learning and memory depend on signaling mole- cules that affect synaptic efficacy. The cytoskeleton has been implicated in regulating synaptic transmission but its role in learning and memory is poorly understood. Fear learning depends on plasticity in the lateral nucleus of the amygdala. We therefore examined whether the cytoskeletal-regulatory protein, myosin light chain kinase, might contribute to fear learning in the rat lateral amygdala. Microinjection of ML-7, a specific inhibitor of myosin light chain kinase, into the lateral nucleus of the amygdala before fear conditioning, but not immediately afterward, enhanced both short-term memory and long-term memory, suggesting that myosin light chain kinase is involved specifically in memory acquisition rather than in posttraining consolidation of memory. Myosin light chain kinase inhibitor had no effect on memory retrieval. Furthermore, ML-7 had no effect on behavior when the train- ing stimuli were presented in a non-associative manner. An- atomical studies showed that myosin light chain kinase is present in cells throughout lateral nucleus of the amygdala and is localized to dendritic shafts and spines that are postsynaptic to the projections from the auditory thalamus to lateral nucleus of the amygdala, a pathway specifically impli- cated in fear learning. Inhibition of myosin light chain kinase enhanced long-term potentiation, a physiological model of learning, in the auditory thalamic pathway to the lateral nu- cleus of the amygdala. When ML-7 was applied without as- sociative tetanic stimulation it had no effect on synaptic responses in lateral nucleus of the amygdala. Thus, myosin light chain kinase activity in lateral nucleus of the amygdala appears to normally suppress synaptic plasticity in the cir- cuits underlying fear learning, suggesting that myosin light chain kinase may help prevent the acquisition of irrelevant fears. Impairment of this mechanism could contribute to pathological fear learning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The world is increasingly moving towards more open models of publishing and communication. The UK government has demonstrated a firm commitment to ensuring that academic research outputs are made available to all who might benefit from access to them, and its open access policy attempts to make academic publications freely available to readers, rather than being locked behind pay walls or only available to researchers with access to well-funded university libraries. Open access policies have an important role to play in fostering an open innovation ecosystem and ensuring that maximum value is derived from investments in university-based research. But are we ready to embrace this change?

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For the first of the baby boomers turning 65 years of age, after a decade littered with financial shocks (dot.com bubble, sub-prime, global financial crisis, sovereign debt), sequencing risk can represent a significant threat to their retirement nest eggs. This paper takes an outcomeoriented approach to the problem, to provide practical insights into how sequencing risk works and the critical dependency of retirement outcomes on sequencing risk. Our analysis challenges the conventional wisdom that it is the accumulated average of investment returns that matter. We show, instead, that it is the realised sequence of returns which largely determines the sustainability of retirement incomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

UV-vis photodissociation action spectroscopy is becoming increasingly prevalent because of advances in, and commercial availability of, ion trapping technologies and tunable laser sources. This study outlines in detail an instrumental arrangement, combining a commercial ion-trap mass spectrometer and tunable nanosecond pulsed laser source, for performing fully automated photodissociation action spectroscopy on gas-phase ions. The components of the instrumentation are outlined, including the optical and electronic interfacing, in addition to the control software for automating the experiment and performing online analysis of the spectra. To demonstrate the utility of this ensemble, the photodissociation action spectra of 4-chloroanilinium, 4-bromoanilinium, and 4-iodoanilinium cations are presented and discussed. Multiple photoproducts are detected in each case and the photoproduct yields are followed as a function of laser wavelength. It is shown that the wavelength-dependent partitioning of the halide loss, H loss, and NH3 loss channels can be broadly rationalized in terms of the relative carbon-halide bond dissociation energies and processes of energy redistribution. The photodissociation action spectrum of (phenyl)Ag-2 (+) is compared with a literature spectrum as a further benchmark.