254 resultados para Porphyromonas gingivalis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Honey has been discussed as a therapeutic option in wound healing since ancient time. It might be also an alternative to the commonly used antimicrobials in periodontitis treatment. The in-vitro study was aimed to determine the antimicrobial efficacy against Porphyromonas gingivalis as a major periodontopathogen. METHODS One Manuka and one domestic beekeeper honey have been selected for the study. As a screening, MICs of the honeys against 20 P. gingivalis strains were determined. Contents of methylglyoxal and hydrogen peroxide as the potential antimicrobial compounds were determined. These components (up to 100 mg/l), propolis (up to 200 mg/l) as well as the two honeys (up to 10% w/v) were tested against four P. gingivalis strains in planktonic growth and in a single-species biofilm. RESULTS 2% of Manuka honey inhibited the growth of 50% of the planktonic P. gingivalis, the respective MIC50 of the German beekeeper honey was 5%. Manuka honey contained 1.87 mg/kg hydrogen peroxide and the domestic honey 3.74 mg/kg. The amount of methylglyoxal was found to be 2 mg/kg in the domestic honey and 982 mg/kg in the Manuka honey. MICs for hydrogen peroxide were 10 mg/l - 100 mg/l, for methylglyoxal 5 - 20 mg/l, and for propolis 20 mg/l - 200 mg/l. 10% of both types of honey inhibited the formation of P. gingivalis biofilms and reduced the numbers of viable bacteria within 42 h-old biofilms. Neither a total prevention of biofilm formation nor a complete eradication of a 42 h-old biofilm by any of the tested compounds and the honeys were found. CONCLUSIONS Honey acts antibacterial against P. gingivalis. The observed pronounced effects of Manuka honey against planktonic bacteria but not within biofilm can be attributed to methylglyoxal as the characteristic antimicrobial component.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Successive immunization of mice with Fusobacterium nucleatum and Porphyromonas gingivalis has been shown to modulate the specific serum IgG responses to these organisms. The aim of this study was to investigate these antibody responses further by examining the IgG subclasses induced as well as the opsonizing properties of the specific antibodies. Serum samples from BALB/c mice immunized with F. nucleatum (gp1-F), P. gingivalis (gp2-P), P. gingivalis followed by F. nucleatum (gp3-PF) F. nucleatum followed by P. gingivalis (gp4-FP) or saline alone (gp5-S) were examined for specific IgG1 (Th2) and IgG2a (Th1) antibody levels using an ELISA and the opsonizing properties measured using a neutrophil chemiluminescence assay. While IgG1 and IgG2a subclasses were induced in all immunized groups, there was a tendency towards an IgG1 response in mice immunized with P. gingivalis alone, while immunization with F. nucleatum followed by P. gingivalis induced significantly higher anti-P. gingivalis IgG2a levels than IgG1. The maximum light output due to neutrophil phagocytosis of P. gingivalis occurred at 10 min using nonopsonized bacteria. Chemiluminescence was reduced using serum-opsonized P. gingivalis and, in particular, sera from P. gingivalis-immunized mice (gp2-P), with maximum responses occurring at 40 min. In contrast, phagocytosis of immune serum-opsonized F. nucleatum demonstrated peak light output at 10 min, while that of F. nucleatum opsonized with sera from saline injected mice (gp5-S) and control nonopsonized bacteria showed peak responses at 40 min. The lowest phagocytic response occurred using gp4-FP serum-opsonized F. nucleatum. In conclusion, the results of the present study have demonstrated a systemic Th1/Th2 response in mice immunized with P. gingivalis and/or F. nucleatum with a trend towards a Th2 response in P. gingivalis-immunized mice and a significantly increased anti-P. gingivalis IgG2a (Th1) response in mice immunized with F. nucleatum prior to P. gingivalis. Further, the inhibition of neutrophil phagocytosis of immune serum-opsonized P. gingivalis was modulated by the presence of anti-F. nucleatum antibodies, while anti-P. gingivalis antibodies induced an inhibitory effect on the phagocytic response to F. nucleatum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to determine nitric oxide (NO) production of a murine macrophage cell line (RAW 264.7 cells) when stimulated with Porphyromonas gingivalis lipopolysaccharides (Pg-LPS). RAW264.7 cells were incubated with i) various concentrations of Pg-LPS or Salmonella typhosa LPS (St-LPS), ii) Pg-LPS with or without L-arginine and/or N-G-monomethyl-L-arginine (NMMA), an arginine analog or iii) Pg-LPS and interferon-gamma (IFN-gamma) with or without anti-IFN-gamma antibodies or interleukin-10 (IL-10). Tissue culture supernatants were assayed for NO levels after 24 h in culture. NO was not observed in tissue culture supernatants of RAW 264.7 cells following stimulation with Pg-LPS, but was observed after stimulation with St-LPS. Exogenous L-arginine restored the ability of Pg-LPS to induce NO production; however, the increase in NO levels of cells stimulated with Pg-LPS with exogenous L-arginine was abolished by NMMA. IFN-gamma induced independent NO production by Pg-LPS-stimulated macrophages and this stimulatory effect of IFN-gamma could be completely suppressed by anti-IFN-gamma antibodies and IL-10. These results suggest that Pg-LPS is able to stimulate NO production in the RAW264.7 macrophage cell model in an L-arginine-dependent mechanism which is itself independent of the action of IFN-gamma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Individuals with periodontitis have been reported to have a significantly increased risk of developing coronary heart disease. Several studies have demonstrated that the immune response to heat shock protein 60 (HSP60) may be involved in the pathogenesis of both atherosclerosis and chronic periodontitis. To investigate this possible link between these diseases, cellular and humoral immune responses to HSP60 in atherosclerosis patients were compared with those in periodontitis patients and healthy subjects using human and Porphyromonas gingivalis HSP60 (GroEL) as antigens. Antibody levels to both human and P. gingivalis HSP60s were the highest in atherosclerosis patients, followed by periodontitis patients and healthy subjects. Clonal analysis of the T cells clearly demonstrated the presence of not only human HSP60- but also P. gingivalis GroEL-reactive T-cell populations in the peripheral circulation of atherosclerosis patients. Furthermore, these HSP60-reactive T cells seemed to be present in atherosclerotic lesions in some patients. These results suggest that T-cell clones with the same specificity may be involved in the pathogenesis of the different diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Periodontitis is a chronic inflammatory disease that results in extensive soft and hard tissue destruction of the periodontium. Porphyromonas gingivalis possesses an array of virulence factors and has been shown to induce expression of inducible nitric oxide synthase (iNOS) in inflammatory cells. The aim of this study was to investigate the effect of eliminating iNOS in a murine model of P. gingivalis infection. This was achieved by utilizing a P. gingivalis-induced skin abscess model, and an alveolar bone loss model employing an oral infection of P. gingivalis in iNOS knockout mice. The results indicated that iNOS knockout mice exhibit more extensive soft tissue damage and alveolar bone loss in response to P. gingivalis infection compared to wild-type mice. The local immune response to P. gingivalis in iNOS knockout mice was characterized by increased numbers of polymorphonuclear monocytes, while the systemic immune response was characterized by high levels of interleukin-12. The iNOS is required for an appropriate response to P. gingivalis infection.