949 resultados para Polymorphism, Single Nucleotide


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Age-related macular degeneration (AMD) is a leading cause of vision loss in the elderly mostly due to the development of neovascular AMD (nAMD) or geographic atrophy (GA). Intravitreal injections of anti-vascular endothelial growth factor (VEGF) agents are an effective therapeutic option for nAMD. Following anti-VEGF treatments, increased atrophy of the retinal pigment epithelium (RPE) and choriocapillaries that resembles GA has been reported. We sought to evaluate the underlying genetic influences that may contribute to this process. Methods: We selected 68 single nucleotide polymorphisms (SNPs) from genes previously identified as susceptibility factors in AMD, along with 43 SNPs from genes encoding the VEGF protein and its cognate receptors as this pathway is targeted by treatment. We enrolled 467 consecutive patients (Feb 2009 to October 2011) with nAMD who received anti-VEGF therapy. The acutely presenting eye was designated as the study eye and retinal tomograms graded for macular atrophy at study exit. Statistical analysis was performed using PLINK to identify SNPs with a P value < 0.01. Logistic regression models with macular atrophy as dependent variable were fitted with age, gender, smoking status, common genetic risk factors and the identified SNPs as explanatory variables. Results: Grading for macular atrophy was available in 304 study eyes and 70% (214) were classified as showing macular atrophy. In the unadjusted analysis we observed significant associations between macular atrophy and two independent SNPs in the APCS gene: rs6695377: odds ratio (OR) = 1.98; 95% confidence intervals (CI): 1.23, 3.19; P = 0.004; rs1446965: OR = 2.49, CI: 1.29, 4.82; P = 0.006 and these associations remained significant after adjustment for covariates. Conclusions: VEGF is a mitogen and growth factor for choroidal blood vessels and the RPE and its inhibition could lead to atrophy of these key tissues. Anti-VEGF treatment can interfere with ocular vascular maintenance and may be associated with RPE and choroidal atrophy. As such, these medications, which block the effects of VEGF, may influence the development of GA. The top associated SNPs are found in the APCS gene, a highly conserved glycoprotein that encodes Serum amyloid P (SAP) which opsonizes apoptotic cells. SAP can bind to and activate complement components via binding to C1q, a mechanism by which SAP may remove cellular debris, affecting regulation of the three complement pathways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pharmacogenetics of antimalarial agents are poorly known, although the application of pharmacogenetics might be critical in optimizing treatment. This population pharmacokinetic-pharmacogenetic study aimed at assessing the effects of single nucleotide polymorphisms (SNPs) in cytochrome P450 isoenzyme genes (CYP, namely, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A4, and CYP3A5) and the N-acetyltransferase 2 gene (NAT2) on the pharmacokinetics of artemisinin-based combination therapies in 150 Tanzanian patients treated with artemether-lumefantrine, 64 Cambodian patients treated with artesunate-mefloquine, and 61 Cambodian patients treated with dihydroartemisinin-piperaquine. The frequency of SNPs varied with the enzyme and the population. Higher frequencies of mutant alleles were found in Cambodians than Tanzanians for CYP2C9*3, CYP2D6*10 (100C → T), CYP3A5*3, NAT2*6, and NAT2*7. In contrast, higher frequencies of mutant alleles were found in Tanzanians for CYP2D6*17 (1023C → T and 2850C → T), CYP3A4*1B, NAT2*5, and NAT2*14. For 8 SNPs, no significant differences in frequencies were observed. In the genetic-based population pharmacokinetic analyses, none of the SNPs improved model fit. This suggests that pharmacogenetic data need not be included in appropriate first-line treatments with the current artemisinin derivatives and quinolines for uncomplicated malaria in specific populations. However, it cannot be ruled out that our results represent isolated findings, and therefore more studies in different populations, ideally with the same artemisinin-based combination therapies, are needed to evaluate the influence of pharmacogenetic factors on the clearance of antimalarials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The tagged microarray marker (TAM) method allows high-throughput differentiation between predicted alternative PCR products. Typically, the method is used as a molecular marker approach to determining the allelic states of single nucleotide polymorphisms (SNPs) or insertion-deletion (indel) alleles at genomic loci in multiple individuals. Biotin-labeled PCR products are spotted, unpurified, onto a streptavidin-coated glass slide and the alternative products are differentiated by hybridization to fluorescent detector oligonucleotides that recognize corresponding allele-specific tags on the PCR primers. The main attractions of this method are its high throughput (thousands of PCRs are analyzed per slide), flexibility of scoring (any combination, from a single marker in thousands of samples to thousands of markers in a single sample, can be analyzed) and flexibility of scale (any experimental scale, from a small lab setting up to a large project). This protocol describes an experiment involving 3,072 PCRs scored on a slide. The whole process from the start of PCR setup to receiving the data spreadsheet takes 2 d.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Progression of the metabolic syndrome (MetS) is determined by genetic and environmental factors. Gene-environment interactions may be important in modulating the susceptibility to the development of MetS traits. Objective: Gene-nutrient interactions were examined in MetS subjects to determine interactions between single nucleotide polymorphisms (SNPs) in the adiponectin gene (ADIPOQ) and its receptors (ADIPOR1 and ADIPOR2) and plasma fatty acid composition and their effects on MetS characteristics. Design: Plasma fatty acid composition, insulin sensitivity, plasma adiponectin and lipid concentrations, and ADIPOQ, ADIPOR1, and ADIPOR2 SNP genotypes were determined in a cross-sectional analysis of 451 subjects with the MetS who participated in the LIPGENE (Diet, Genomics, and the Metabolic Syndrome: an Integrated Nutrition, Agro-food, Social, and Economic Analysis) dietary intervention study and were repeated in 1754 subjects from the LIPGENE-SU.VI.MAX (SUpplementation en VItamines et Mineraux AntioXydants) case-control study (http://www.ucd.ie/lipgene). Results: Single SNP effects were detected in the cohort. Triacylglycerols, nonesterified fatty acids, and waist circumference were significantly different between genotypes for 2 SNPs (rs266729 in ADIPOQ and rs10920533 in ADIPOR1). Minor allele homozygotes for both of these SNPs were identified as having degrees of insulin resistance, as measured by the homeostasis model assessment of insulin resistance, that were highly responsive to differences in plasma saturated fatty acids (SFAs). The SFA-dependent association between ADIPOR1 rs10920533 and insulin resistance was replicated in cases with MetS from a separate independent study, which was an association not present in controls. Conclusions: A reduction in plasma SFAs could be expected to lower insulin resistance in MetS subjects who are minor allele carriers of rs266729 in ADIPOQ and rs10920533 in ADIPOR1. Personalized dietary advice to decrease SFA consumption in these individuals may be recommended as a possible therapeutic measure to improve insulin sensitivity. This trial was registered at clinicaltrials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Adiponectin gene expression is modulated by peroxisome proliferator–activated receptor γ, which is a transcription factor activated by unsaturated fatty acids. Objective: We investigated the effect of the interaction between variants at the ADIPOQ gene locus, age, sex, body mass index (BMI), ethnicity, and the replacement of dietary saturated fatty acids (SFAs) with monounsaturated fatty acids (MUFAs) or carbohydrates on serum adiponectin concentrations. Design: The RISCK (Reading, Imperial, Surrey, Cambridge, and Kings) study is a parallel-design, randomized controlled trial. Serum adiponectin concentrations were measured after a 4-wk high-SFA (HS) diet and a 24-wk intervention with reference (HS), high-MUFA (HM), and low-fat (LF) diets. Single nucleotide polymorphisms at the ADIPOQ locus −11391 G/A (rs17300539), −10066 G/A (rs182052), −7734 A/C (rs16861209), and +276 G/T (rs1501299) were genotyped in 448 participants. Results: In white Europeans, +276 T was associated with higher serum adiponectin concentrations (n = 340; P = 0.006) and −10066 A was associated with lower serum adiponectin concentrations (n = 360; P = 0.03), after adjustment for age, BMI, and sex. After the HM diet, −10066 G/G subjects showed a 3.8% increase (95% CI: −0.1%, 7.7%) and G/A+A/A subjects a 2.6% decrease (95% CI: −5.6%, 0.4%) in serum adiponectin (P = 0.006 for difference after adjustment for the change in BMI, age, and sex). In −10066 G/G homozygotes, serum adiponectin increased with age after the HM diet and decreased after the LF diet. Conclusion: In white −10066 G/G homozygotes, an HM diet may help to increase adiponectin concentrations with advancing age. This trial was registered at clinicaltrials.gov as ISRCTN29111298.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background/Aims: The peroxisome proliferator-activated receptors (PPARs) are transcriptional regulators of lipid metabolism, activated by unsaturated fatty acids. We investigated independent and interactive effects of PPARγ2 gene PPARG Pro12Ala (rs1801282) andPPARαgene PPARA Leu162Val (rs1800206) genotypes with dietary intake of fatty acids on concentrations of plasma lipids in subjects of whom 47.5% had metabolic syndrome. Methods: The RISCK study is a parallel design, randomised controlled trial. Plasma lipids were quantified at baseline after a 4-week high saturated fatty acids diet and after three parallel 24-week interventions with reference (high saturated fatty acids), high monounsaturated fatty acids and low-fat diets. Single nucleotide polymorphisms were genotyped in 466 subjects. Results: At baseline, the PPARG Ala12allele was associated with increased plasma total cholesterol (n = 378; p = 0.04), LDL cholesterol (p = 0.05) and apoB (p =0.05) after adjustment for age, gender and ethnicity. At baseline, PPARA Leu162Val × PPARG Pro12Ala genotype interaction did not significantly influence plasma lipid concentrations. After dietary intervention, gene-gene interaction significantly influenced LDL cholesterol (p =0.0002) and small dense LDL as a proportion of LDL (p = 0.005) after adjustments. Conclusions: Interaction between PPARG Pro12Ala and PPARA Leu162Valgenotypes may influence plasma LDL cholesterol concentration and the proportion as small dense LDL after a high monounsaturated fatty acids diet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Leptospira have a worldwide distribution and include important zoonotic pathogens yet diagnosis and differentiation still tend to rely on traditional bacteriological and serological approaches. In this study a 1.3 kb fragment of the rrs gene (16S rDNA) was sequenced from a panel of 22 control strains, representing serovars within the pathogenic species Leptospira interrogans, Leptospira borgpetersenii, and Leptospira kirschneri, to identify single nucleotide polymorphisms (SNPs). These were identified in the 5' variable region of the 16S sequence and a 181 bp PCR fragment encompassing this region was used for speciation by Denaturing High Performance Liquid Chromatography (D-HPLC). This method was applied to eleven additional species, representing pathogenic, non-pathogenic and intermediate species and was demonstrated to rapidly differentiate all but 2 of the non-pathogenic Leptospira species. The method was applied successfully to infected tissues from field samples proving its value for diagnosing leptospiral infections found in animals in the UK. Crown Copyright (C) 2010 Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An increasing number of studies have reported a heritable component for the regulation of energy intake and eating behaviour, although the individual polymorphisms and their ‘effect size’ are not fully elucidated. The aim of the present study was to examine the relationship between specific SNP and appetite responses and energy intake in overweight men. In a randomised cross-over trial, forty overweight men (age 32 (sd 09) years; BMI 27 (sd 2) kg/m2) attended four sessions 1 week apart and received three isoenergetic and isovolumetric servings of dairy snacks or water (control) in random order. Appetite ratings were determined using visual analogue scales and energy intake at an ad libitum lunch was assessed 90 min after the dairy snacks. Individuals were genotyped for SNP in the fat mass and obesity-associated (FTO), leptin (LEP), leptin receptor (LEPR) genes and a variant near the melanocortin-4 receptor (MC4R) locus. The postprandial fullness rating over the full experiment following intake of the different snacks was 17·2 % (P= 0·026) lower in A carriers compared with TT homozygotes for rs9939609 (FTO, dominant) and 18·6 % (P= 0·020) lower in G carriers compared with AA homozygotes for rs7799039 (LEP, dominant). These observations indicate that FTO and LEP polymorphisms are related to the variation in the feeling of fullness and may play a role in the regulation of food intake. Further studies are required to confirm these initial observations and investigate the ‘penetrance’ of these genotypes in additional population subgroups.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Differences in the interindividual response to dietary intervention could be modified by genetic variation in nutrient-sensitive genes. OBJECTIVE: This study examined single nucleotide polymorphisms (SNPs) in presumed nutrient-sensitive candidate genes for obesity and obesity-related diseases for main and dietary interaction effects on weight, waist circumference, and fat mass regain over 6 mo. DESIGN: In total, 742 participants who had lost ≥ 8% of their initial body weight were randomly assigned to follow 1 of 5 different ad libitum diets with different glycemic indexes and contents of dietary protein. The SNP main and SNP-diet interaction effects were analyzed by using linear regression models, corrected for multiple testing by using Bonferroni correction and evaluated by using quantile-quantile (Q-Q) plots. RESULTS: After correction for multiple testing, none of the SNPs were significantly associated with weight, waist circumference, or fat mass regain. Q-Q plots showed that ALOX5AP rs4769873 showed a higher observed than predicted P value for the association with less waist circumference regain over 6 mo (-3.1 cm/allele; 95% CI: -4.6, -1.6; P/Bonferroni-corrected P = 0.000039/0.076), independently of diet. Additional associations were identified by using Q-Q plots for SNPs in ALOX5AP, TNF, and KCNJ11 for main effects; in LPL and TUB for glycemic index interaction effects on waist circumference regain; in GHRL, CCK, MLXIPL, and LEPR on weight; in PPARC1A, PCK2, ALOX5AP, PYY, and ADRB3 on waist circumference; and in PPARD, FABP1, PLAUR, and LPIN1 on fat mass regain for dietary protein interaction. CONCLUSION: The observed effects of SNP-diet interactions on weight, waist, and fat mass regain suggest that genetic variation in nutrient-sensitive genes can modify the response to diet. This trial was registered at clinicaltrials.gov as NCT00390637.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rationale:Metabolic Syndrome (MetS) is a high prevalence condition characterized by altered energy metabolism, insulin resistance and elevated cardiovascular risk.Objectives:Although many individual single nucleotide polymorphisms (SNPs) have been linked to certain MetS features, there are few studies analyzing the influence of SNPs on carbohydrate metabolism in MetS.Methods:904 SNPs (tag SNPs and functional SNPs) were tested for influence in eight fasting and dynamic markers of carbohydrate metabolism, performing an intravenous glucose tolerance test in 450 participants of the LIPGENE study.Findings:From 382 initial gene-phenotype associations between SNPs and any phenotypic variables, 61 (a 16 % of the pre-selected) remained significant after Bootstrapping. Top SNPs affecting glucose metabolism variables were as follows: fasting glucose: rs26125 (PPARGC1B); fasting insulin: rs4759277 (LRP1); C peptide: rs4759277 (LRP1); HOMA-IR: rs4759277 (LRP1); QUICKI: rs184003 (AGER); SI: rs7301876 (ABCC9), AIRg: rs290481 (TCF7L2) and DI: rs12691 (CEBPA).Conclusions:We describe here the top SNPs linked to phenotypic features in carbohydrate metabolism among aproximately 1000 candidate gene variations in fasting and postprandial samples of 450 patients with MetS from the LIPGENE study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Although the peroxisome proliferator-activated receptor γ (PPARγ) pathway is central in adipogenesis, it remains unknown whether it influences change in body weight (BW) and whether dietary fat has a modifying effect on the association. OBJECTIVES: We examined whether 27 single nucleotide polymorphisms (SNPs) within 4 genes in the PPARγ pathway are associated with the OR of being a BW gainer or with annual changes in anthropometry and whether intake of total fat, monounsaturated fat, polyunsaturated fat, or saturated fat has a modifying effect on these associations. METHODS: A case-noncase study included 11,048 men and women from cohorts in the European Diet, Obesity and Genes study; 5552 were cases, defined as individuals with the greatest BW gain during follow-up, and 6548 were randomly selected, including 5496 noncases. We selected 4 genes [CCAAT/enhancer binding protein β (CEBPB), phosphoenolpyruvate carboxykinase 2, PPARγ gene (PPARG), and sterol regulatory element binding transcription factor 1] according to evidence about biologic plausibility for interactions with dietary fat in weight regulation. Diet was assessed at baseline, and anthropometry was followed for 7 y. RESULTS: The ORs for being a BW gainer for the 27 genetic variants ranged from 0.87 (95% CI: 0.79, 1.03) to 1.12 (95% CI: 0.96, 1.22) per additional minor allele. Uncorrected, CEBPB rs4253449 had a significant interaction with the intake of total fat and subgroups of fat. The OR for being a BW gainer for each additional rs4253449 minor allele per 100 kcal higher total fat intake was 1.07 (95% CI: 1.02, 1.12; P = 0.008), and similar associations were found for subgroups of fat. CONCLUSIONS: Among European men and women, the influence of dietary fat on associations between SNPs in the PPARγ pathway and anthropometry is likely to be absent or marginal. The observed interaction between rs4253449 and dietary fat needs confirmation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An increasingly popular and promising way for complex disease diagnosis is to employ artificial neural networks (ANN). Single nucleotide polymorphisms (SNP) data from individuals is used as the inputs of ANN to find out specific SNP patterns related to certain disease. Due to the large number of SNPs, it is crucial to select optimal SNP subset and their combinations so that the inputs of ANN can be reduced. With this observation in mind, a hybrid approach - a combination of genetic algorithms (GA) and ANN (called GANN) is used to automatically determine optimal SNP set and optimize the structure of ANN. The proposed GANN algorithm is evaluated by using both a synthetic dataset and a real SNP dataset of a complex disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The closely related pathogenic Neisseria species N. meningitidis and N. gonorrhoeae are able to respire in the absence of oxygen, using nitrite as an alternative electron acceptor. aniA (copper-containing nitrite reductase) is tightly regulated by four transcriptional regulators: FNR (fumarate and nitrate reductase), NarP, FUR (Ferric uptake regulator) and NsrR. The four regulators control expression of aniA in N. meningitidis by binding to specific and distinct regions of the promoter. We show in the present study that FUR and NarP are both required for the induction of expression of aniA in N. meningitidis, and that they bind adjacent to one another in a non-co-operative manner. Activation via FUR/NarP is dependent on their topological arrangement relative to the RNA polymerase-binding site. Analysis of the sequence of the aniA promoters from multiple N. meningitidis and N. gonorrhoeae strains indicates that there are species-specific single nucleotide polymorphisms, in regions predicted to be important for regulator binding. These sequence differences alter both the in vitro DNA binding and the promoter activation in intact cells by key activators FNR (oxygen sensor) and NarP (which is activated by nitrite in N. meningitidis). The weak relative binding of FNR to the N. gonorrhoeae aniA promoter (compared to N. meningitidis) is compensated for by a higher affinity of the gonococcal aniA promoter for NarP. Despite containing nearly identical genes for catalysing and regulating denitrification, variations in the promoter for the aniA gene appear to have been selected to enable the two pathogens to tune differentially their responses to environmental variables during the aerobic–anaerobic switch.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Leprosy is a complex infectious disease influenced by genetic and environmental factors. The genetic contributing factors are considered heterogeneous and several genes have been consistently associated with susceptibility like PARK2, tumor necrosis factor (TNF), lymphotoxin-alpha (LTA) and vitamin-D receptor (VDR). Here, we combined a case-control study (374 patients and 380 controls), with meta-analysis (5 studies; 2702 individuals) and biological study to test the epidemiological and physiological relevance of the interleukin-10 (IL-10) genetic markers in leprosy. We observed that the -819T allele is associated with leprosy susceptibility either in the case-control or in the meta-analysis studies. Haplotypes combining promoter single-nucleotide polymorphisms also implicated a haplotype carrying the -819T allele in leprosy susceptibility (odds ratio (OR) = 1.40; P = 0.01). Finally, we tested IL-10 production in peripheral blood mononuclear cells stimulated with Mycobacterium leprae antigens and found that -819T carriers produced lower levels of IL-10 when compared with noncarriers. Taken together, these data suggest that low levels of IL-10 during the disease outcome can drive patients to a chronic and unprotective response that culminates with leprosy.