955 resultados para Polymorphism genetic


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Hundreds of genes show aberrant DNA hypermethylation in cancer, yet little is known about the causes of this hypermethylation. We identified RIL as a frequent methylation target in cancer. In search for factors that influence RIL hypermethylation, we found a 12-bp polymorphic sequence around its transcription start site that creates a long allele. Pyrosequencing of homozygous tumors revealed a 2.1-fold higher methylation for the short alleles (P<0.001). Bisulfite sequencing of cancers heterozygous for RIL showed that the short alleles are 3.1-fold more methylated than the long (P<0.001). The comparison of expression levels between unmethylated long and short EBV-transformed cell lines showed no difference in expression in vivo. Electrophorectic mobility shift assay showed that the inserted region of the long allele binds Sp1 and Sp3 transcription factors, a binding that is absent in the short allele. Transient transfection of RIL allele-specific transgenes showed no effects of the additional Sp1 site on transcription early on. However, stable transfection of methylation-seeded constructs showed gradually decreasing transcription levels from the short allele with eventual spreading of de novo methylation. In contrast, the long allele showed stable levels of expression over time as measured by luciferase and approximately 2-3-fold lower levels of methylation by bisulfite sequencing (P<0.001), suggesting that the polymorphic Sp1 site protects against time-dependent silencing. Our finding demonstrates that, in some genes, hypermethylation in cancer is dictated by protein-DNA interactions at the promoters and provides a novel mechanism by which genetic polymorphisms can influence an epigenetic state.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The interpretation of data on genetic variation with regard to the relative roles of different evolutionary factors that produce and maintain genetic variation depends critically on our assumptions concerning effective population size and the level of migration between neighboring populations. In humans, recent population growth and movements of specific ethnic groups across wide geographic areas mean that any theory based on assumptions of constant population size and absence of substructure is generally untenable. We examine the effects of population subdivision on the pattern of protein genetic variation in a total sample drawn from an artificial agglomerate of 12 tribal populations of Central and South America, analyzing the pooled sample as though it were a single population. Several striking findings emerge. (1) Mean heterozygosity is not sensitive to agglomeration, but the number of different alleles (allele count) is inflated, relative to neutral mutation/drift/equilibrium expectation. (2) The inflation is most serious for rare alleles, especially those which originally occurred as tribally restricted "private" polymorphisms. (3) The degree of inflation is an increasing function of both the number of populations encompassed by the sample and of the genetic divergence among them. (4) Treating an agglomerated population as though it were a panmictic unit of long standing can lead to serious biases in estimates of mutation rates, selection pressures, and effective population sizes. Current DNA studies indicate the presence of numerous genetic variants in human populations. The findings and conclusions of this paper are all fully applicable to the study of genetic variation at the DNA level as well.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Individuals with Lynch syndrome are predisposed to cancer due to an inherited DNA mismatch repair gene mutation. However, there is significant variability observed in disease expression likely due to the influence of other environmental, lifestyle, or genetic factors. Polymorphisms in genes encoding xenobiotic-metabolizing enzymes may modify cancer risk by influencing the metabolism and clearance of potential carcinogens from the body. In this retrospective analysis, we examined key candidate gene polymorphisms in CYP1A1, EPHX1, GSTT1, GSTM1, and GSTP1 as modifiers of age at onset of colorectal cancer among 257 individuals with Lynch syndrome. We found that subjects heterozygous for CYP1A1 I462V (c.1384A>G) developed colorectal cancer 4 years earlier than those with the homozygous wild-type genotype (median ages, 39 and 43 years, respectively; log-rank test P = 0.018). Furthermore, being heterozygous for the CYP1A1 polymorphisms, I462V and Msp1 (g.6235T>C), was associated with an increased risk for developing colorectal cancer [adjusted hazard ratio for AG relative to AA, 1.78; 95% confidence interval, 1.16-2.74; P = 0.008; hazard ratio for TC relative to TT, 1.53; 95% confidence interval, 1.06-2.22; P = 0.02]. Because homozygous variants for both CYP1A1 polymorphisms were rare, risk estimates were imprecise. None of the other gene polymorphisms examined were associated with an earlier onset age for colorectal cancer. Our results suggest that the I462V and Msp1 polymorphisms in CYP1A1 may be an additional susceptibility factor for disease expression in Lynch syndrome because they modify the age of colorectal cancer onset by up to 4 years.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: H19 is a strong candidate gene for influencing birth weight variation and is exclusively imprinted maternally. In an attempt to understand the relationship of this gene polymorphism with low birth weight children, we investigated association of H19/RsaI polymorphism with low birth weight and normal birth weight in children and their mothers. Objectives: The aim of our study was to establish the association between H19 gene polymorphism and LW in children born in Pernambuco, state of Brazil. Patients and Methods: It were selected 89 children, 40 low birth weight (LW) and 49 normal birth weight (NW) and 71 mothers (40 mothers of newborns NW and 31 mothers of newborns LW) attended at Dom Malan Hospital, Petrolina, Pernambuco - Brazil. Peripheral blood samples were collected from patients and genomic DNA was extracted and detected by electrophoresis agarose gel, stained by Blue Green Loading Dye. DNA PCR amplification was done using the primers H1 (sense) and H3 (antisense). PCR products were digested with RsaI and electrophoresed on agarose gel stained by ethidium bromide. Statistical analyses were performed using the program BioEstat version 5.0. Results: The RsaI polymorphism in the H19 gene showed that genotype frequencies did not differ statistically between low birth weight (AA = 12.5%, AB = 45%, BB = 42.5%) and control (AA = 8.6% AB = 36.73%, BB= 55.10% groups) and the allele frequencies were not significantly different (P = 0.2897). We also did not observe any association between maternal H19 allele polymorphism and low birth weight newborns (P =0.7799) or normal birth weight children (P = 0.8976). Conclusions: The small size of sample may be the explanation for these results; future studies with more patients are needed to confirm the effect of H19/RsaI polymorphism on birth weight of LW newborns.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dystrobrevin binding protein 1 (DTNBP1), or dysbindin, is thought to be critical in regulating the glutamatergic system. While the dopamine pathway is known to be important in the aetiology of schizophrenia, it seems likely that glutamatergic dysfunction can lead to the development of schizophrenia. DTNBP1 is widely expressed in brain, levels are reduced in brains of schizophrenia patients and a DTNBP1 polymorphism has been associated with reduced brain expression. Despite numerous genetic studies no DTNBP1 polymorphism has been strongly implicated in schizophrenia aetiology. Using a haplotype block-based gene-tagging approach we genotyped 13 SNPs in DTNBP1 to investigate possible associations with DTNBP1 and schizophrenia. Four polymorphisms were found to be significantly associated with schizophrenia. The strongest association was found with an A/C SNP in intron 7 (rs9370822). Homozygotes for the C allele of rs9370822 were more than two and a half times as likely to have schizophrenia compared to controls. The other polymorphisms showed much weaker association and are less likely to be biologically significant. These results suggest that DTNBP1 is a good candidate for schizophrenia risk and rs9370822 is either functionally important or in disequilibrium with a functional SNP, although our observations should be viewed with caution until they are independently replicated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recently, a polymorphism was identified in exon 25 of the factor V gene that is possibly a functional candidate for the HR2 haplotype. This haplotype is characterized by a single base substitution named R2 (A4070G) in the B domain of the protein. A mutation (A6755G; 2194Asp→Gly) located near the C terminus has been hypothesized to influence protein folding and glycosylation, and might be responsible for the shift in factor V isoform (FV1 / FV2) ratio. This study investigated the prevalence of these two factor V HR2 haplotype polymorphisms in a cohort of normal blood donors, patients with osteoarthritis and women with complications during pregnancy, and in families of factor V Leiden individuals. A high allele frequency for the two polymorphisms was found in the blood donor group (6.2% R2, 5.6% A6755G). No significant difference in allele frequency was observed in the clinical groups (obstetric complications and osteoarthritis, 4.1-4.9% for the two polymorphisms) when compared with that of healthy blood donors. We confirm that the factor V A6755G polymorphism shows strong linkage to the R2 allele, although it is not exclusively inherited with the exon 13 A4070G variant and can occur independently. © 2001 Lippincott Williams & Wilkins.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Approximately 50% of all melanoma families worldwide show linkage to 9p21-22, but only about half of these have been shown to contain germ line CDKN2A mutations. It has been hypothesized that a proportion of these families carry mutations in the noncoding regions of CDKN2A. Several Canadian families have been reported to carry a mutation in the 5' UTR, at position -34 relative to the start site, which gives rise to a novel AUG translation initiation codon that markedly decreases translation from the wild-type AUG (Liu et al., 1999). Haplotype sharing in these Canadian families suggested that this mutation is of British origin. We sequenced 1,327 base pairs (bp) of CDKN2A, making up 1,116 bp of the 5' UTR and promoter, all of exon 1, and 61 bp of intron 1, in at least one melanoma case from 110 Australian families with three or more affected members known not to carry mutations within the p16 coding region. In addition, 431 bp upstream of the start codon was sequenced in an additional 253 affected probands from two-case melanoma families for which the CDKN2A mutation status was unknown. Several known polymorphisms at positions -33, -191, -493, and -735 were detected, in addition to four novel variants at positions 120, -252, -347, and -981 relative to the start codon. One of the probands from a two-case family was found to have the previously reported Q50R mutation. No family member was found to carry the mutation at position -34 or any other disease-associated mutation. For further investigation of noncoding CDKN2A mutations that may affect transcription, allele-specific expression analysis was carried out in 31 of the families with at least three affected members who showed either complete or "indeterminate" 9p haplotype sharing without CDKN2A exonic mutations. Reverse transcription polymerase chain reaction and automated sequencing showed expression of both CDKN2A alleles in all family members tested. The lack of CDKN2A promoter mutations and the absence of transcriptional silencing in the germ line of this cohort of families suggest that mutations in the promoter and 5' UTR play a very limited role in melanoma predisposition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Population-wide associations between loci due to linkage disequilibrium can be used to map quantitative trait loci (QTL) with high resolution. However, spurious associations between markers and QTL can also arise as a consequence of population stratification. Statistical methods that cannot differentiate between loci associations due to linkage disequilibria from those caused in other ways can render false-positive results. The transmission-disequilibrium test (TDT) is a robust test for detecting QTL. The TDT exploits within-family associations that are not affected by population stratification. However, some TDTs are formulated in a rigid-form, with reduced potential applications. In this study we generalize TDT using mixed linear models to allow greater statistical flexibility. Allelic effects are estimated with two independent parameters: one exploiting the robust within-family information and the other the potentially biased between-family information. A significant difference between these two parameters can be used as evidence for spurious association. This methodology was then used to test the effects of the fourth melanocortin receptor (MC4R) on production traits in the pig. The new analyses supported the previously reported results; i.e., the studied polymorphism is either causal of in very strong linkage disequilibrium with the causal mutation, and provided no evidence for spurious association.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study used next generation sequencing technologies to investigate growth in a cultured crustacean. The objective was to identify and characterise specific gene loci that contribute important phenotypic variation to growth as well as to develop a large set of SNP markers in candidate genes for assessing correlations between specific mutations and individual growth performance. The genomic dataset generated provides a fundamental resource for application in future crustacean stock improvement programs. Ultimately, the data can be applied to development of culture lines with improved growth performance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nitric oxide synthase and renal kallikrein are both involved in blood pressure regulation. Genes for these enzymes may, therefore, be considered candidates for hypertension pathogenesis. 2. In the present study, genotypes for nitric oxide synthase and renal kallikrein microsatellite markers were determined in a cross-sectional association analysis of hypertensive patients and normotensive control subjects. 3. Results from this study did not indicate an association of either of the candidate gene polymorphisms with essential hypertension. Hence, findings for this study do not support a role for these genes in human hypertension.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background & Aims: Peroxisome proliferator-activated receptor (PPAR) γ is a transcription factor, highly expressed in colonic epithelial cells, adipose tissue and macrophages, with an important role in the regulation of inflammatory pathways. The common PPARγ variants C161T and Pro12Ala have recently been associated with Ulcerative Colitis (UC) and an extensive UC phenotype respectively, in a Chinese population. PPARγ Pro12Ala variant homozygotes appear to be protected from the development of Crohn's disease (CD) in European Caucasians. Methods: A case-control study was performed for both variants (CD n=575, UC n=306, Controls n=360) using a polymerase chain reaction (PCR)-restriction fragment length polymorphism analysis in an Australian IBD cohort. A transmission disequilibrium test was also performed using CD trios for the PPARγ C161T variant. Genotype-phenotype analyses were also undertaken. Results: There was no significant difference in genotype distribution data or allele frequency between CD and UC patients and controls. There was no difference in allele transmission for the C161T variant. No significant relationship between the variants and disease location was observed. Conclusions: We were unable to replicate in a Caucasian cohort the recent association between PPARγ C161T and UC or between PPARγ Pro12Ala and an extensive UC phenotype in a Chinese population. There are significant ethnic differences in genetic susceptibility to IBD and its phenotypic expression.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVE To determine whether a microsatellite polymorphism located towards the 3' end of the low density lipoprotein receptor gene (LDLR) is associated with obesity. DESIGN A cross-sectional case-control study. SUBJECTS One hundred and seven obese individuals, defined as a body mass index (BMI) ≤ 26 kg/m2, and 163 lean individuals, defined as a BMI < 26 kg/m2. MEASUREMENTS BMI, blood pressure, serum lipids, alleles of LDLR microsatellite (106 bp, 108 bp and 112 bp). RESULTS There was a significant association between variants of the LDLR microsatellite and obesity, in the overall tested population, due to a contributing effect in females (χ2 = 12.3, P = 0.002), but not in males (χ2 = 0.3, P = 0.87). In females, individuals with the 106 bp allele were more likely to be lean, while individuals with the 112 bp and/or 108 bp alleles tended to be obese. CONCLUSIONS These results suggest that in females, LDLR may play a role in the development of obesity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tobacco smoking, alcohol drinking, and occupational exposures to polycyclic aromatic hydrocarbons are the major proven risk factors for human head and neck squamous-cell cancer (HNSCC). Major research focus on gene-environment interactions concerning HNSCC has been on genes encoding enzymes of metabolism for tobacco smoke constituents and repair enzymes. To investigate the role of genetically determined individual predispositions in enzymes of xenobiotic metabolism and in repair enzymes under the exogenous risk factor tobacco smoke in the carcinogenesis of HNSCC, we conducted a case-control study on 312 cases and 300 noncancer controls. We focused on the impact of 22 sequence variations in CYP1A1, CYP1B1, CYP2E1, ERCC2/XPD, GSTM1, GSTP1, GSTT1, NAT2, NQO1, and XRCC1. To assess relevant main and interactive effects of polymorphic genes on the susceptibility to HNSCC we used statistical models such as logic regression and a Bayesian version of logic regression. In subgroup analysis of nonsmokers, main effects in ERCC2 (Lys751Gln) C/C genotype and combined ERCC2 (Arg156Arg) C/A and A/A genotypes were predominant. When stratifying for smokers, the data revealed main effects on combined CYP1B1 (Leu432Val) C/G and G/G genotypes, followed by CYP1B1 (Leu432Val) G/G genotype and CYP2E1 (-70G>T) G/T genotype. When fitting logistic regression models including relevant main effects and interactions in smokers, we found relevant associations of CYP1B1 (Leu432Val) C/G genotype and CYP2E1 (-70G>T) G/T genotype (OR, 10.84; 95% CI, 1.64-71.53) as well as CYP1B1 (Leu432Val) G/G genotype and GSTM1 null/null genotype (OR, 11.79; 95% CI, 2.18-63.77) with HNSCC. The findings underline the relevance of genotypes of polymorphic CYP1B1 combined with exposures to tobacco smoke.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The importance of the isoform CYP2E1 of the human cytochrome P-450 superfamily of enzymes for occupational and environmental medicine is derived from its unique substrate spectrum that includes a number of highly important high-production chemicals, such as aliphatic and aromatic hydrocarbons, solvents and industrial monomers (i.a. alkanes, alkenes, aromatic and halogenated hydrocarbons). Many polymorphic genes, such as CYP2E1, show considerable differences in allelic distribution between different human populations. The polymorphic nature of the human CYP2E1 gene is significant for inter-individual differences in toxicity of its substrates. Since the substrate spectrum of CYP2E1 includes many compounds of basic relevance to industrial toxicology, a rationale for metabolic interactions of different CYP2E1 substrates is provided. In-depth research into the inter-individual phenotypic differences of human CYP2E1 enzyme activities was enabled by the recognition that the 6-hydroxylation of the drug chlorzoxazone is mediated by CYP2E1. Studies on CYP2E1 phenotyping have pointed to inter-individual variations in enzyme activities. There are consistent ethnic differences in CYP2E1 enzyme expression, mostly demonstrated between European and Japanese populations, which point to a major impact of genetic factors. The most frequently studied genetic polymorphisms are the restriction fragment length polymorphisms PstI/RsaI (mutant allele: CYP2E1*5B) located in the 5′-flanking region of the gene, as well as the DraI polymorphism (mutant allele: CYP2E1*6) located in intron 6. These polymorphisms are partly related, as they form the common allele designated CYP2E1*5A. Striking inter-ethnic differences between Europeans and Asians appear with respect to the frequencies of the CYP2E1*5A allele (only approximately 5% of Europeans are heterozygous, but 37% of Asians are, whilst 6% of Asians are homozygous). Available studies indicate a wide variation in human CYP2E1 expression, which are very likely based on complex gene-environment interactions. Major inter-ethnic differences are apparent on the genotyping and the phenotyping levels. Selected cases are presented where inter-ethnic variations of CYP2E1 may provide likely explanations for unexplained findings concerning industrial chemicals that are CYP2E1 substrates. Possible consequences of differential inter-individual and inter-ethnic susceptibilities are related to individual expressions of clinical symptoms of chemical toxicity, to results of biological monitoring of exposed workers, and to the interpretation of results of epidemiological or molecular-epidemiological studies.