961 resultados para Polyacrylamide hydrogel


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel method has been developed to synthesize mesoporous silica spheres using commercial silica colloids (SNOWTEX) as precursors and electrolytes (ammonium nitrate and sodium chloride) as destabilizers. Crosslinked polyacrylamide hydrogel was used as a temporary barrier to obtain dispersible spherical mesoporous silica particles. The influences of synthesis conditions including solution composition and calcination temperature on the formation of the mesoporous silica particles were systematically investigated. The structure and morphology of the mesoporous silica particles were characterized via scanning electron microscopy (SEM) and N2 sorption technique. Mesoporous silica particles with particle diameters ranging from 0.5 to 1.6 μm were produced whilst the BET surface area was in the range of 31-123 m2 g-1. Their pore size could be adjusted from 14.1 to 28.8 nm by increasing the starting particle diameter from 20-30 nm up to 70-100 nm. A simple and cost effective method is reported that should open up new opportunities for the synthesis of scalable host materials with controllable structures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A polyacrylamide hydrogel containing the Chelex-100 resin has traditionally been used as the binding agent for the diffusion gradients in thin films (DGT) technique. The Chelex-100 resin, although important for the determination of various transition metals, is unsatisfactory for the determination of alkaline earth metals, particularly Ba. In this paper, a cellulose membrane, treated with phosphate (P81 membrane), was evaluated as a binding agent for DGT devices for the determination of Ba in produced formation water (PEW) samples. In addition, diffusive layers of filter paper (cellulose) were tested to diffuse Ba through the DGT devices. Experiments to evaluate the key variables of the technique (pH, deployment time, and ionic strength/salinity) were performed. The Ba sampled by these DGT devices was measured using inductively coupled plasma optical emission spectrometry. Aiming to generate information (related to bioavailability of Ba) on the reuse of PEW for irrigation, the determination of Ba in onshore and offshore samples was performed. The new approach was effective for determination of Ba in onshore samples. To determine Ba in offshore samples, it was necessary to use an alternative calibration procedure due to the high NaCl concentration in these samples. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The first part of the thesis describes a new patterning technique--microfluidic contact printing--that combines several of the desirable aspects of microcontact printing and microfluidic patterning and addresses some of their important limitations through the integration of a track-etched polycarbonate (PCTE) membrane. Using this technique, biomolecules (e.g., peptides, polysaccharides, and proteins) were printed in high fidelity on a receptor modified polyacrylamide hydrogel substrate. The patterns obtained can be controlled through modifications of channel design and secondary programming via selective membrane wetting. The protocols support the printing of multiple reagents without registration steps and fast recycle times. The second part describes a non-enzymatic, isothermal method to discriminate single nucleotide polymorphisms (SNPs). SNP discrimination using alkaline dehybridization has long been neglected because the pH range in which thermodynamic discrimination can be done is quite narrow. We found, however, that SNPs can be discriminated by the kinetic differences exhibited in the dehybridization of PM and MM DNA duplexes in an alkaline solution using fluorescence microscopy. We combined this method with multifunctional encoded hydrogel particle array (fabricated by stop-flow lithography) to achieve fast kinetics and high versatility. This approach may serve as an effective alternative to temperature-based method for analyzing unamplified genomic DNA in point-of-care diagnostic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interest in hydrogel materials is growing rapidly, due to the potential for hydrogel use in tissue engineering and drug delivery applications, and as coatings on medical devices. However, a key limitation with the use of hydrogel materials in many applications is their relatively poor mechanical properties compared with those of (less biocompatible) solid polymers. In this review, basic chemistry, microstructure and processing routes for common natural and synthetic hydrogel materials are explored first. Underlying structure-properties relationships for hydrogels are considered. A series of mechanical testing modalities suitable for hydrogel characterisation are next considered, including emerging test modalities, such as nanoindentation and atomic force microscopy (AFM) indentation. As the data analysis depends in part on the material's constitutive behaviour, a series of increasingly complex constitutive models will be examined, including elastic, viscoelastic and theories that explicitly treat the multiphasic poroelastic nature of hydrogel materials. Results from the existing literature on agar and polyacrylamide mechanical properties are compiled and compared, highlighting the challenges and uncertainties inherent in the process of gel mechanical characterisation. © 2014 Institute of Materials, Minerals and Mining and ASM International.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we synthesized a novel series of hydrogels composed of polyacrylamide (PAAm), methylcellulose (MC), and calcic montmorillonite (MMt) appropriate for the controlled release of fertilizers, where the components presented a synergistic effect, giving very high fertilizer loading in their structure. The synthesized hydrogel was characterized in relation to morphological, hydrophilic, spectroscopic, structural, thermal, and kinetic properties. After those characterizations, the application potential was verified through sorption and desorption studies of a nitrogenated fertilizer, urea (CO(NH2)2). The swelling degree results showed that the clay loading considerably reduces the water absorption capability; however, the hydrolysis process favored the urea adsorption in the hydrogel nanocomposites, increasing the load content according to the increase of the clay mass. The FTIR spectra indicated that there was incorporation of the clay with the polymeric matrix of the hydrogel and that incorporation increased the water absorption speed (indicated by the kinetic constant k). By an X-ray diffraction technique, good nanodispersion (intercalation) and exfoliation of the clay platelets in the hydrogel matrix were observed. Furthermore, the presence of the montmorillonite in the hydrogel caused the system to liberate the nutrient in a more controlled manner than that with the neat hydrogel in different pH ranges. In conclusion, excellent results were obtained for the controlled desorption of urea, highlighting the hydrolyzed hydrogels containing 50% calcic montmorillonite. This system presented the best desorption results, releasing larger amounts of nutrient and almost 200 times slower than pure urea, i.e., without hydrogel. The total values of nutrients present in the system show that this material is potentially viable for application in agriculture as a nutrient carrier vehicle. © 2013 American Chemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite the current market popularity of silicone hydrogel contact lenses, conventional hydrogel lenses still represent a significant proportion of the overall contact lens market. Data gathered from annual UK contact lens fitting surveys over the past 13 years indicate that 64% of hydrogel lenses prescribed during this period were of low/medium water content (<60% water). Whereas, in the past, practitioners would choose the water content of a hydrogel lens to meet specific clinical needs, this choice appears today to be largely governed by product availability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silicone hydrogel contact lenses were introduced into the market in 1999. To assess prescribing trends of this lens type since then, up to 1000 survey forms were sent to contact lens fitters in Australia, Canada, Japan, the Netherlands, Norway, the UK and the USA each year between 2000 and 2008. Practitioners were asked to record data relating to the first 10 contact lens fits or refits performed after receiving the survey form. Analysis of returned forms revealed a rapid increase in the prescribing of silicone hydrogel lenses over the survey period. In 2008, silicone hydrogel lenses represented 36% of all soft lenses prescribed. The categorization of the majority of lenses prescribed as ‘refits’ is primarily attributed to the mass conversion of lens wearers from hydrogel to silicone hydrogel lenses. Silicone hydrogels may soon represent the majority of soft contact lenses prescribed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this project was to investigate the in vitro osteogenic potential of human mesenchymal progenitor cells in novel matrix architectures built by means of a three-dimensional bioresorbable synthetic framework in combination with a hydrogel. Human mesenchymal progenitor cells (hMPCs) were isolated from a human bone marrow aspirate by gradient centrifugation. Before in vitro engineering of scaffold-hMPC constructs, the adipogenic and osteogenic differentiation potential was demonstrated by staining of neutral lipids and induction of bone-specific proteins, respectively. After expansion in monolayer cultures, the cells were enzymatically detached and then seeded in combination with a hydrogel into polycaprolactone (PCL) and polycaprolactone-hydroxyapatite (PCL-HA) frameworks. This scaffold design concept is characterized by novel matrix architecture, good mechanical properties, and slow degradation kinetics of the framework and a biomimetic milieu for cell delivery and proliferation. To induce osteogenic differentiation, the specimens were cultured in an osteogenic cell culture medium and were maintained in vitro for 6 weeks. Cellular distribution and viability within three-dimensional hMPC bone grafts were documented by scanning electron microscopy, cell metabolism assays, and confocal laser microscopy. Secretion of the osteogenic marker molecules type I procollagen and osteocalcin was analyzed by semiquantitative immunocytochemistry assays. Alkaline phosphatase activity was visualized by p-nitrophenyl phosphate substrate reaction. During osteogenic stimulation, hMPCs proliferated toward and onto the PCL and PCL-HA scaffold surfaces and metabolic activity increased, reaching a plateau by day 15. The temporal pattern of bone-related marker molecules produced by in vitro tissue-engineered scaffold-cell constructs revealed that hMPCs differentiated better within the biomimetic matrix architecture along the osteogenic lineage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Designed three-dimensional biodegradable poly(ethylene glycol)/poly(D,L-lactide) hydrogel structures were prepared for the first time by stereolithography at high resolutions. A photopolymerisable aqueous resin comprising PDLLA-PEG-PDLLA-based macromer, visible light photo-initiator, dye and inhibitor in DMSO/water was used to build the structures. Porous and non-porous hydrogels with well-defined architectures and good mechanical properties were prepared. Porous hydrogel structures with a gyroid pore network architecture showed narrow pore size distributions, excellent pore interconnectivity and good mechanical properties. The structures showed good cell seeding characteristics, and human mesenchymal stem cells adhered and proliferated well on these materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We aim to fabricate computer-controlled hydrogel structures containing viable encapsulated cells to overcome the low seeding densities which are inherent to most pre-fabricated scaffold systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three-dimensional biodegradable poly(ethylene glycol)/poly(D,L-lactide) hydrogel structures were prepared by stereolithography. A photo-polymerisable liquid resin comprising PDLLA-PEG-PDLLA-based macromer, visible light photo-initiator, dye and inhibitor in DMSO/water was used to build the structures. Hydrogels with welldefined architectures and good mechanical properties were prepared. Hydrogel structures with a gyroid pore network architecture showed narrow pore size distributions, excellent pore interconnectivity and good mechanical properties. The structures showed good cell seeding characteristics, and human mesenchymal stem cells adhered and proliferated on these materials.