992 resultados para Plant Sciences


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The recent summary report of a Department of Energy Workshop on Plant Systems Biology (P.V. Minorsky [2003] Plant Physiol 132: 404-409) offered a welcomed advocacy for systems analysis as essential in understanding plant development, growth, and production. The goal of the Workshop was to consider methods for relating the results of molecular research to real-world challenges in plant production for increased food supplies, alternative energy sources, and environmental improvement. The rather surprising feature of this report, however, was that the Workshop largely overlooked the rich history of plant systems analysis extending over nearly 40 years (Sinclair and Seligman, 1996) that has considered exactly those challenges targeted by the Workshop. Past systems research has explored and incorporated biochemical and physiological knowledge into plant simulation models from a number of perspectives. The research has resulted in considerable understanding and insight about how to simulate plant systems and the relative contribution of various factors in influencing plant production. These past activities have contributed directly to research focused on solving the problems of increasing biomass production and crop yields. These modeling approaches are also now providing an avenue to enhance integration of molecular genetic technologies in plant improvement (Hammer et al., 2002).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Xyloglucan-acting enzymes are believed to have effects on type I primary plant cell wall mechanical properties. In order to get a better understanding of these effects, a range of enzymes with different in vitro modes of action were tested against cell wall analogues (bio-composite materials based on Acetobacter xylinus cellulose and xyloglucan). Tomato pericarp xyloglucan endo transglycosylase (tXET) and nasturtium seed xyloglucanase (nXGase) were produced heterologously in Pichia pastoris. Their action against the cell wall analogues was compared with that of a commercial preparation of Trichoderma endo-glucanase (EndoGase). Both 'hydrolytic' enzymes (nXGase and EndoGase) were able to depolymerise not only the cross-link xyloglucan fraction but also the surface-bound fraction. Consequent major changes in cellulose fibril architecture were observed. In mechanical terms, removal of xyloglucan cross-links from composites resulted in increased stiffness (at high strain) and decreased visco-elasticity with similar extensibility. On the other hand, true transglycosylase activity (tXET) did not affect the cellulose/xyloglucan ratio. No change in composite stiffness or extensibility resulted, but a significant increase in creep behaviour was observed in the presence of active tXET. These results provide direct in vitro evidence for the involvement of cell wall xyloglucan-specific enzymes in mechanical changes underlying plant cell wall re-modelling and growth processes. Mechanical consequences of tXET action are shown to be complimentary to those of cucumber expansin.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cyclotides are plant-derived miniproteins that have the unusual features of a head-to-tail cyclized peptide backbone and a knotted arrangement of disulfide bonds. It had been postulated that they might be an especially large family of host defense agents, but this had not yet been tested by field data on cyclotide variation in wild plant populations. In this study, we sampled Australian Hybanthus (Violaceae) to gain an insight into the level of variation within populations, within species, and between species. A wealth of cyclotide diversity was discovered: at least 246 new cyclotides are present in the 11 species sampled, and 26 novel sequences were characterized. A new approach to the discovery of cyclotide sequences was developed based on the identification of a conserved sequence within a signal sequence in cyclotide precursors. The number of cyclotides in the Violaceae is now estimated to be >9000. Cyclotide physicochemical profiles were shown to be a useful taxonomic feature that reflected species and their morphological relationships. The novel sequences provided substantial insight into the tolerance of the cystine knot framework in cyclotides to amino acid substitutions and will facilitate protein engineering applications of this framework.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Functional-structural plant models that include detailed mechanistic representation of underlying physiological processes can be expensive to construct and the resulting models can also be extremely complicated. On the other hand, purely empirical models are not able to simulate plant adaptability and response to different conditions. In this paper, we present an intermediate approach to modelling plant function that can simulate plant response without requiring detailed knowledge of underlying physiology. Plant function is modelled using a 'canonical' modelling approach, which uses compartment models with flux functions of a standard mathematical form, while plant structure is modelled using L-systems. Two modelling examples are used to demonstrate that canonical modelling can be used in conjunction with L-systems to create functional-structural plant models where function is represented either in an accurate and descriptive way, or in a more mechanistic and explanatory way. We conclude that canonical modelling provides a useful, flexible and relatively simple approach to modelling plant function at an intermediate level of abstraction.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Glutamate dehydrogenase (GDH; EC 1.4.1.2-1.4.1.4) catalyses in vitro the reversible amination of 2-oxoglutarate to glutamate. In vascular plants the in vivo direction(s) of the GDH reaction and hence the physiological role(s) of this enzyme remain obscure. A phylogenetic analysis identified two clearly separated groups of higher-plant GDH genes encoding either the alpha- or beta-subunit of the GDH holoenzyme. To help clarify the physiological role(s) of GDH, tobacco (Nicotiana tabacum L.) was transformed with either an antisense or sense copy of a beta-subunit gene, and transgenic plants recovered with between 0.5- and 34-times normal leaf GDH activity. This large modulation of GDH activity (shown to be via alteration of beta-subunit levels) had little effect on leaf ammonium or the leaf free amino acid pool, except that a large increase in GDH activity was associated with a significant decrease in leaf Asp (similar to 51%, P=0.0045). Similarly, plant growth and development were not affected, suggesting that a large modulation of GDH beta-subunit titre does not affect plant viability under the ideal growing conditions employed. Reduction of GDH activity and protein levels in an antisense line was associated with a large increase in transcripts of a beta-subunit gene, suggesting that the reduction in beta-subunit levels might have been due to translational inhibition. In another experiment designed to detect post-translational up-regulation of GDH activity, GDH over-expressing plants were subjected to prolonged dark-stress. GDH activity increased, but this was found to be due more likely to resistance of the GDH protein to stress-induced proteolysis, rather than to post-translational up-regulation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background and Aims The morphogenesis and architecture of a rice plant, Oryza sativa, are critical factors in the yield equation, but they are not well studied because of the lack of appropriate tools for 3D measurement. The architecture of rice plants is characterized by a large number of tillers and leaves. The aims of this study were to specify rice plant architecture and to find appropriate functions to represent the 3D growth across all growth stages. Methods A japonica type rice, 'Namaga', was grown in pots under outdoor conditions. A 3D digitizer was used to measure the rice plant structure at intervals from the young seedling stage to maturity. The L-system formalism was applied to create '3D virtual rice' plants, incorporating models of phenological development and leaf emergence period as a function of temperature and photoperiod, which were used to determine the timing of tiller emergence. Key Results The relationships between the nodal positions and leaf lengths, leaf angles and tiller angles were analysed and used to determine growth functions for the models. The '3D virtual rice' reproduces the structural development of isolated plants and provides a good estimation of the fillering process, and of the accumulation of leaves. Conclusions The results indicated that the '3D virtual rice' has a possibility to demonstrate the differences in the structure and development between cultivars and under different environmental conditions. Future work, necessary to reflect both cultivar and environmental effects on the model performance, and to link with physiological models, is proposed in the discussion.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Plant defence and senescence share many similarities as evidenced by extensive co-regulation of many genes during these responses. To better understand the nature of signals that are common to plant defence and senescence, we studied the regulation of SEN1 encoding a senescence-associated protein during plant defence responses in Arabidopsis. Pathogen inoculations and treatments with defence-related chemical signals, salicylic acid and methyl jasmonate induced changes in SEN1 transcript levels. Analysis of transgenic plants expressing the SEN1 promoter fused to uidA reporter gene confirmed the responsiveness of the SEN1 promoter to defence- and senescence-associated signals. Expression analysis of SEN1 in a number of defence signalling mutants indicated that activation of this gene by pathogen occurs predominantly via the salicylic and jasmonic acid signalling pathways, involving the functions of EDS5, NPR1 and JAR1 In addition, in the absence of pathogen challenge, the cpr5/hys1 mutant showed elevated SEN1 expression and displayed an accelerated senescence response following inoculation with the necrotrophic fungal pathogen Fusarhan oxysporum. Although the analysis of the sen1-1 knock-out mutant did not reveal any obvious role for this gene in defence or senescence-associated events, our results presented here show that SEN1 is regulated by signals that link plant defence and senescence responses and thus represents a useful marker gene to study the overlap between these two important physiological events. (c) 2005 Elsevier SAS. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Full analysis of eight seed samples collected in the 1960's excavations at Neolithic Catalhoyuk East, Turkey, is presented. Detailed investigation of the composition and context of the samples suggests that the Neolithic population collected, processed and stored seeds from Capsella sp. and Descurainia sp. (wild crucifers) for food use. In addition seeds of Vicia/Lathyrus sp. (wild vetch), Helianthemum spp. and Taeniatherum caput-medusae mixed with Eremopyrum type (grasses) were also found, some of which may have been used for food or other purposes. The analysis demonstrates that wild seed exploitation was a regular part of subsistence practice alongside the economic staple of crop production, and again demonstrates how diverse plant use practices were at the site.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mangrove ecosystems can be either nitrogen (N) or phosphorus (P) limited and are therefore vulnerable to nutrient pollution. Nutrient enrichment with either N or P may have differing effects on ecosystems because of underlying differences in plant physiological responses to these nutrients in either N- or P-limited settings. Using a common mangrove species, Avicennia germinans, in sites where growth was either N or P limited, we investigated differing physiological responses to N and P limitation and fertilization. We tested the hypothesis that water uptake and transport, and hydraulic architecture, were the main processes limiting productivity at the P-limited site, but that this was not the case at the N-limited site. We found that plants at the P-deficient site had lower leaf water potential, stomatal conductance and photosynthetic carbon-assimilation rates, and less conductive xylem, than those at the N-limited site. These differences were greatly reduced with P fertilization at the P-limited site. By contrast, fertilization with N at the N-limited site had little effect on either photosynthetic or hydraulic traits. We conclude that growth in N- and P-limited sites differentially affect the hydraulic pathways of mangroves. Plants experiencing P limitation appear to be water deficient and undergo more pronounced changes in structure and function with relief of nutrient deficiency than those in N-limited ecosystems.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Allowing plant pathology students to tackle fictitious or real crop problems during the course of their formal training not only teaches them the diagnostic process, but also provides for a better understanding of disease etiology. Such a problem-solving approach can also engage, motivate, and enthuse students about plant pathologgy in general. This paper presents examples of three problem-based approaches to diagnostic training utilizing freely available software. The first provides an adventure-game simulation where Students are asked to provide a diagnosis and recommendation after exploring a hypothetical scenario or case. Guidance is given oil how to create these scenarios. The second approach involves students creating their own scenarios. The third uses a diagnostic template combined with reporting software to both guide and capture students' results and reflections during a real diagnostic assignment.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Increasing temperatures resulting from climate change have within recent years been shown to advance phenological events in a large number of species worldwide. Species can differ in their response to increasing temperatures, and understanding the mechanisms that determine the response is therefore of great importance in order to understand and predict how a warming climate can influence both individual species, but also their interactions with each other and the environment. Understanding the mechanisms behind responses to increasing temperatures are however largely unexplored. The selected study system consisting of host plant species of the Brassicaceae family and their herbivore Anthocharis cardamines, is assumed to be especially vulnerable to climatic variations. Through the use of this study system, the aim of this thesis is to study differences in the effect of temperature on development to start of flowering within host plant species from different latitudinal regions (study I), and among host plant species (study II). We also investigate whether different developmental phases leading up to flowering differ in sensitivity to temperature (study II), and if small-scale climatic variation in spring temperature influence flowering phenology and interactions with A. cardamines (study III). Finally, we investigate if differences in the timing of A. cardamines relative to its host plants influence host species use and the selection of host individuals differing in phenology within populations (study IV). Our results showed that thermal reaction norms differ among regions along a latitudinal gradient, with the host plant species showing a mixture of co-, counter- and mixed gradient patterns (study I). We also showed that observed differences in the host plant species order of flowering among regions and years might be caused by both differences in the distribution of warm days during development and differences in the sensitivity to temperature in different phases of development (study II). In addition, we showed that small-scale variations in temperature led to variation in flowering phenology among and within populations of C. pratensis, impacting the interactions with the butterfly herbivore A. cardamines. Another result was that the less the mean plant development stage of a given plant species in the field deviated from the stage preferred by the butterfly for oviposition, the more used was the species as a host by the butterfly (study IV). Finally, we showed that the later seasonal appearance of the butterflies relative to their host plants, the higher butterfly preference for host plant individuals with a later phenology, corresponding to a preference for host plants in earlier development stages (study IV). For our study system, this thesis suggest that climate change will lead to changes in the interactions between host plants and herbivore, but that differences in phenology among host plants combined with changes in host species use of the herbivore might buffer the herbivore against negative effects of climate change. Our work highlights the need to understand the mechanisms behind differences in the responses of developmental rates to temperature between interacting species, as well as the need to account for differences in temperature response for interacting organisms from different latitudinal origins and during different developmental phases in order to understand and predict the consequences of climate change. 

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Plant tissue culture is a technique that exploits the ability of many plant cells to revert to a meristematic state. Although originally developed for botanical research, plant tissue culture has now evolved into important commercial practices and has become a significant research tool in agriculture, horticulture and in many other areas of plant sciences. Plant tissue culture is the sterile culture of plant cells, tissues, or organs under aseptic conditions leading to cell multiplication or regeneration or organs and whole plants. The steps required to develop reliable systems for plant regeneration and their application in plant biotechnology are reviewed in countless books. Some of the major landmarks in the evolution of in vitro techniques are summarised in Table 5.1. In this chapter the current applications of this technology to agriculture, horticulture, forestry and plant breeding are briefly described with specific examples from Australian plants when applicable.