972 resultados para Physiology


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the effect of hydrotherapy on time-trial performance and cardiac parasympathetic reactivation during recovery from intense training. On three occasions, 18 well-trained cyclists completed 60 min high-intensity cycling, followed 20 min later by one of three 10-min recovery interventions: passive rest (PAS), cold water immersion (CWI), or contrast water immersion (CWT). The cyclists then rested quietly for 160 min with R-R intervals and perceptions of recovery recorded every 30 min. Cardiac parasympathetic activity was evaluated using the natural logarithm of the square root of mean squared differences of successive R-R intervals (ln rMSSD). Finally, the cyclists completed a work-based cycling time trial. Effects were examined using magnitude-based inferences. Differences in time-trial performance between the three trials were trivial. Compared with PAS, general fatigue was very likely lower for CWI (difference [90% confidence limits; -12% (-18; -5)]) and CWT [-11% (-19; -2)]. Leg soreness was almost certainly lower following CWI [-22% (-30; -14)] and CWT [-27% (-37; -15)]. The change in mean ln rMSSD following the recovery interventions (ln rMSSD(Post-interv)) was almost certainly higher following CWI [16.0% (10.4; 23.2)] and very likely higher following CWT [12.5% (5.5; 20.0)] compared with PAS, and possibly higher following CWI [3.7% (-0.9; 8.4)] compared with CWT. The correlations between performance, ln rMSSD(Post-interv) and perceptions of recovery were unclear. A moderate correlation was observed between ln rMSSD(Post-interv) and leg soreness [r = -0.50 (-0.66; -0.29)]. Although the effects of CWI and CWT on performance were trivial, the beneficial effects on perceptions of recovery support the use of these recovery strategies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: To assess the symptoms of heat illness experienced by surface mine workers. Methods: Ninety-one surface mine workers across three mine sites in northern Australia completed a heat stress questionnaire evaluating their symptoms for heat illness. A cohort of 56 underground mine workers also participated for comparative purposes. Participants were allocated into asymptomatic, minor or moderate heat illness categories depending on the number of symptoms they reported. Participants also reported the frequency of symptom experience, as well as their hydration status (average urine colour). Results: Heat illness symptoms were experienced by 87 and 79 % of surface and underground mine workers, respectively (p = 0.189), with 81–82 % of the symptoms reported being experienced by miners on more than one occasion. The majority (56 %) of surface workers were classified as experiencing minor heat illness symptoms, with a further 31 % classed as moderate; 13 % were asymptomatic. A similar distribution of heat illness classification was observed among underground miners (p = 0.420). Only 29 % of surface miners were considered well hydrated, with 61 % minimally dehydrated and 10 % significantly dehydrated, proportions that were similar among underground miners (p = 0.186). Heat illness category was significantly related to hydration status (p = 0.039) among surface mine workers, but only a trend was observed when data from surface and underground miners was pooled (p = 0.073). Compared to asymptomatic surface mine workers, the relative risk of experiencing minor and moderate symptoms of heat illness was 1.5 and 1.6, respectively, when minimally dehydrated. Conclusions: These findings show that surface mine workers routinely experience symptoms of heat illness and highlight that control measures are required to prevent symptoms progressing to medical cases of heat exhaustion or heat stroke.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study was designed to determine the Intraocular Pressure (IOP) response to differing levels of dehydration. Seven males participated in a 90 minute treadmill walk (5 km/h and 1 % grade) in both a cool (22 °C) and hot (43 °C) climate. At Baseline and at 30 minute intervals measurements of IOP, by tonometery, and indicators of hydration status (nude weight and plasma osmolality (Posm)) were taken. Body temperature and heart rate were also measured at these time points. Statistically significant interactions (time point (4) by trial (2)) were observed for IOP (F = 10.747, p = 0.009) and body weight loss (F = 50.083, p < 0.001) to decrease, and Posm (F = 34.867, p < 0.001) to increase, by a significantly greater amount during the hot trial compared to the cool. A univariate general linear model showed a significant relationship between IOP and body weight loss (F = 37.63, p < 0.001) and Posm (F = 38.53, p < 0.001). A significant interaction was observed for body temperature (F = 20.908, p < 0.001) and heart rate (F = 25.487, p < 0.001) between the trials and time points, but there was negligible association between these variables and IOP (Pearson correlation coefficient < ±0.5). The present study provides evidence to suggest that IOP is influenced by hydration status.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives In non-alcoholic fatty liver disease (NAFLD), hepatic steatosis is intricately linked with a number of metabolic alterations. We studied substrate utilisation in NAFLD during basal, insulin-stimulated and exercise conditions, and correlated these outcomes with disease severity. Methods 20 patients with NAFLD (mean±SD body mass index (BMI) 34.1±6.7 kg/m2) and 15 healthy controls (BMI 23.4±2.7 kg/m2) were assessed. Respiratory quotient (RQ), whole-body fat (Fatox) and carbohydrate (CHOox) oxidation rates were determined by indirect calorimetry in three conditions: basal (resting and fasted), insulin-stimulated (hyperinsulinaemic–euglycaemic clamp) and exercise (cycling at an intensity to elicit maximal Fatox). Severity of disease and steatosis were determined by liver histology, hepatic Fatox from plasma β-hydroxybutyrate concentrations, aerobic fitness expressed as , and visceral adipose tissue (VAT) measured by computed tomography. Results Within the overweight/obese NAFLD cohort, basal RQ correlated positively with steatosis (r=0.57, p=0.01) and was higher (indicating smaller contribution of Fatox to energy expenditure) in patients with NAFLD activity score (NAS) ≥5 vs <5 (p=0.008). Both results were independent of VAT, % body fat and BMI. Compared with the lean control group, patients with NAFLD had lower basal whole-body Fatox (1.2±0.3 vs 1.5±0.4 mg/kgFFM/min, p=0.024) and lower basal hepatic Fatox (ie, β-hydroxybutyrate, p=0.004). During exercise, they achieved lower maximal Fatox (2.5±1.4 vs. 5.8±3.7 mg/kgFFM/min, p=0.002) and lower (p<0.001) than controls. Fatox during exercise was not associated with disease severity (p=0.79). Conclusions Overweight/obese patients with NAFLD had reduced hepatic Fatox and reduced whole-body Fatox under basal and exercise conditions. There was an inverse relationship between ability to oxidise fat in basal conditions and histological features of NAFLD including severity of steatosis and NAS

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We examined the effects of progressive resistance training (PRT) and supplementation with calcium-vitamin D(3) fortified milk on markers of systemic inflammation, and the relationship between inflammation and changes in muscle mass, size and strength. Healthy men aged 50-79 years (n = 180) participated in this 18-month randomized controlled trial that comprised a factorial 2 x 2 design. Participants were randomized to (1) PRT + fortified milk supplement, (2) PRT, (3) fortified milk supplement, or (4) a control group. Participants assigned to PRT trained 3 days per week, while those in the supplement groups consumed 400 ml day(-1) of milk containing 1,000 mg calcium plus 800 IU vitamin D(3). We collected venous blood samples at baseline, 12 and 18 months to measure the serum concentrations of IL-6, TNF-alpha and hs-CRP. There were no exercise x supplement interactions, but serum IL-6 was 29% lower (95% CI, -62, 0) in the PRT group compared with the control group after 12 months. Conversely, IL-6 was 31% higher (95% CI, -2, 65) in the supplement group compared with the non-supplemented groups after 12 and 18 months. These between-group differences did not persist after adjusting for changes in fat mass. In the PRT group, mid-tibia muscle cross-sectional area increased less in men with higher pre-training inflammation compared with those men with lower inflammation (net difference similar to 2.5%, p < 0.05). In conclusion, serum IL-6 concentration decreased following PRT, whereas it increased after supplementation with fortified milk concomitant with changes in fat mass. Furthermore, low-grade inflammation at baseline restricted muscle hypertrophy following PRT.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: Exercise increases the production of reactive oxygen species (ROS) in skeletal muscle, and athletes often consume antioxidant supplements in the belief they will attenuate ROS-related muscle damage and fatigue during exercise. However, exercise-induced ROS may regulate beneficial skeletal muscle adaptations, such as increased mitochondrial biogenesis. We therefore investigated the effects of long-term antioxidant supplementation with vitamin E and alpha-lipoic acid on changes in markers of mitochondrial biogenesis in the skeletal muscle of exercise-trained and sedentary rats. Methods: Male Wistar rats were divided into four groups: 1) sedentary control diet, 2) sedentary antioxidant diet, 3) exercise control diet, and 4) exercise antioxidant diet. Animals ran on a treadmill 4 d.wk(-1) at similar to 70% V (over dot)O(2max) for up to 90 min.d(-1) for 14 wk. Results: Consistent with the augmentation of skeletal muscle mitochondrial biogenesis and antioxidant defenses, after training there were significant increases in peroxisome proliferator-activated receptor F coactivator 1 alpha (PGC-1 alpha) messenger RNA (mRNA) and protein, cytochrome C oxidase subunit IV (COX IV) and cytochrome C protein abundance, citrate synthase activity, Nfe2l2, and SOD2 protein (P < 0.05). Antioxidant supplementation reduced PGC-1 alpha mRNA, PGC-1 alpha and COX IV protein, and citrate synthase enzyme activity (P < 0.05) in both sedentary and exercise-trained rats. Conclusions: Vitamin E and alpha-lipoic acid supplementation suppresses skeletal muscle mitochondrial biogenesis, regardless of training status.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Scope: We examined whether dietary supplementation with fish oil modulates inflammation, fibrosis and oxidative stress following obstructive renal injury. Methods and results: Three groups of Sprague-Dawley rats (n = 16 per group) were fed for 4 wk on normal rat chow (oleic acid), chow containing fish oil (33 g eicosapentaenoic acid and 26 g docosahexaenoic acid per kg diet), or chow containing safflower oil (60 g linoleic acid per kg diet). All diets contained 7% fat. After 4 wk, the rats were further subdivided into four smaller groups (n = 4 per group). Unilateral ureteral obstruction was induced in three groups (for 4, 7 and 14 days). The fourth group for each diet did not undergo surgery, and was sacrificed as controls at 14 days. When rats were sacrificed, plasma and portions of the kidneys were removed and frozen; other portions of kidney tissue were fixed and prepared for histology. Compared with normal chow and safflower oil, fish oil attenuated collagen deposition, macrophage infiltration, TGF-beta expression, apoptosis, and tissue levels of arachidonic acid, MIP-1 alpha, IL-1 beta, MCP-1 and leukotriene B(4). Compared with normal chow, fish oil increased the expression of HO-1 protein in kidney tissue. Conclusions: Fish oil intake reduced inflammation, fibrosis and oxidative stress following obstructive renal injury.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We compared the effects of an ice-slush beverage (ISB) and a cool liquid beverage (CLB) on cycling performance, changes in rectal temperature (T (re)) and stress responses in hot, humid conditions. Ten trained male cyclists/triathletes completed two exercise trials (75 min cycling at similar to 60% peak power output + 50 min seated recovery + 75% peak power output x 30 min performance trial) on separate occasions in 34A degrees C, 60% relative humidity. During the recovery phase before the performance trial, the athletes consumed either the ISB (mean +/- A SD -0.8 +/- A 0.1A degrees C) or the CLB (18.4 +/- A 0.5A degrees C). Performance time was not significantly different after consuming the ISB compared with the CLB (29.42 +/- A 2.07 min for ISB vs. 29.98 +/- A 3.07 min for CLB, P = 0.263). T (re) (37.0 +/- A 0.3A degrees C for ISB vs. 37.4 +/- A 0.2A degrees C for CLB, P = 0.001) and physiological strain index (0.2 +/- A 0.6 for ISB vs. 1.1 +/- A 0.9 for CLB, P = 0.009) were lower at the end of recovery and before the performance trial after ingestion of the ISB compared with the CLB. Mean thermal sensation was lower (P < 0.001) during recovery with the ISB compared with the CLB. Changes in plasma volume and the concentrations of blood variables (i.e., glucose, lactate, electrolytes, cortisol and catecholamines) were similar between the two trials. In conclusion, ingestion of ISB did not significantly alter exercise performance even though it significantly reduced pre-exercise T (re) compared with CLB. Irrespective of exercise performance outcomes, ingestion of ISB during recovery from exercise in hot humid environments is a practical and effective method for cooling athletes following exercise in hot environments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Context: Postprandial dysmetabolism is emerging as an important cardiovascular risk factor. Augmentation index (AIx) is a measure of systemic arterial stiffness and independently predicts cardiovascular outcome. Objective: The objective of this study was to assess the effect of a standardized high-fat meal on metabolic parameters and AIx in 1) lean, 2) obese nondiabetic, and 3) subjects with type 2 diabetes mellitus (T2DM). Design and Setting: Male subjects (lean, n = 8; obese, n = 10; and T2DM, n = 10) were studied for 6 h after a high-fat meal and water control. Glucose, insulin, triglycerides, and AIx (radial applanation tonometry) were measured serially to determine the incremental area under the curve (iAUC). Results: AIx decreased in all three groups after a high-fat meal. A greater overall postprandial reduction in AIx was seen in lean and T2DM compared with obese subjects (iAUC, 2251 +/- 1204, 2764 +/- 1102, and 1187 +/- 429% . min, respectively; P < 0.05). The time to return to baseline AIx was significantly delayed in subjects with T2DM (297 +/- 68 min) compared with lean subjects (161 +/- 88 min; P < 0.05). There was a significant correlation between iAUC AIx and iAUC triglycerides (r = 0.50; P < 0.05). Conclusions: Obesity is associated with an attenuated overall postprandial decrease in AIx. Subjects with T2DM have a preserved, but significantly prolonged, reduction in AIx after a high-fat meal. The correlation between AIx and triglycerides suggests that postprandial dysmetabolism may impact on vascular dynamics. The markedly different response observed in the obese subjects compared with those with T2DM was unexpected and warrants additional evaluation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The 'open window' theory is characterised by short term suppression of the immune system following an acute bout of endurance exercise. This window of opportunity may allow for an increase in susceptibility to upper respiratory illness (URI). Many studies have indicated a decrease in immune function in response to exercise. However, many studies do not indicate changes in immune function past 2 hours after the completion of exercise, consequently failing to determine whether these immune cells numbers, or importantly their function, return to resting levels before the start of another bout of exercise. Ten male 'A' grade cyclists (age 24.2 +/- 5.3 years; body mass 73.8 +/- 6.5 kg; VO(2peak) 65.9 +/- 7.1 mL.kg(-1).min(-1)) exercised for two hours at 90% of their second ventilatory threshold. Blood samples were collected pre-, immediately post-, 2 hours, 4 hours, 6 hours, 8 hours, and 24 hours post-exercise. Immune variables examined included total leukocyte counts, neutrophil function (oxidative burst and phagocytic function), lymphocyte subset counts (CD4(+), CD8(+), and CD16(+)/56(+)), natural killer cell activity (NKCA), and NK phenotypes (CD56(dim)CD16(+), and CD56(bright)CD16(-)). There was a significant increase in total lymphocyte numbers from pre-, to immediately post-exercise (p<0.01), followed by a significant decrease at 2 hours post-exercise (p<0.001). CD4(+) T-cell counts significantly increased from pre-exercise, to 4 hours post- (p<0.05), and 6 hours post-exercise (p<0.01). However, NK (CD16(+)/56(+)) cell numbers decreased significantly from pre-exercise to 4 h post-exercise (p<0.05), to 6 h post-exercise (p<0.05), and to 8 h post-exercise (p<0.01). In contrast, CD56(bright)CD16- NK cell counts significantly increased from pre-exercise to immediately post-exercise (p<0.01). Neutrophil oxidative burst activity did not significantly change in response to exercise, while neutrophil cell counts significantly increased from pre-exercise, to immediately post-exercise (p<0.05), and 2 hours post-exercise (p<0.01), and remained significantly above pre-exercise levels to 8 hours post-exercise (p<0.01). Neutrophil phagocytic function significantly decreased from 2 hours post-exercise, to 6 hours post- (p<0.05), and 24 hours post-exercise (p<0.05). Finally, eosinophil cell counts significantly increased from 2 hours post to 6 hours post- (p<0.05), and 8 hours post-exercise (p<0.05). This is the first study to show changes in immunological variables up to 8 hours post-exercise, including significant NK cell suppression, NK cell phenotype changes, a significant increase in total lymphocyte counts, and a significant increase in eosinophil cell counts all at 8 hours post-exercise. Suppression of total lymphocyte counts, NK cell counts and neutrophil phagocytic function following exercise may be important in the increased rate of URI in response to regular intense endurance training.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims: This study investigated the association between the basal (rest) insulin-signaling proteins, Akt, and the Akt substrate AS160, metabolic risk factors, inflammatory markers and aerobic fitness, in middle-aged women with varying numbers of metabolic risk factors for type 2 diabetes. Methods: Sixteen women (n = 16) aged 51.3+/-5.1 (mean +/-SD) years provided muscle biopsies and blood samples at rest. In addition, anthropometric characteristics and aerobic power were assessed and the number of metabolic risk factors for each participant was determined (IDF criteria). Results: The mean number of metabolic risk factors was 1.6+/-1.2. Total Akt was negatively correlated with IL-1 beta (r = -0.45, p = 0.046), IL-6 (r = -0.44, p = 0.052) and TNF-alpha (r = -0.51, p = 0.025). Phosphorylated AS160 was positively correlated with HDL (r = 0.58, p = 0.024) and aerobic fitness (r = 0.51, p = 0.047). Furthermore, a multiple regression analysis revealed that both HDL (t = 2.5, p = 0.032) and VO(2peak) (t = 2.4, p = 0.037) were better predictors for phosphorylated AS160 than TNF-alpha or IL-6 (p>0.05). Conclusions: Elevated inflammatory markers and increased metabolic risk factors may inhibit insulin-signaling protein phosphorylation in middle-aged women, thereby increasing insulin resistance under basal conditions. Furthermore, higher HDL and fitness levels are associated with an increased AS160 phosphorylation, which may in turn reduce insulin resistance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aging and its effects on inflammation in skeletal muscle at rest and following exercise-induced muscle injury. Am J Physiol Regul Integr Comp Physiol 298: R1485-R1495, 2010. First published April 14, 2010; doi:10.1152/ajpregu.00467.2009.-The world's elderly population is expanding rapidly, and we are now faced with the significant challenge of maintaining or improving physical activity, independence, and quality of life in the elderly. Counteracting the progressive loss of muscle mass that occurs in the elderly, known as sarcopenia, represents a major hurdle in achieving these goals. Indirect evidence for a role of inflammation in sarcopenia is that markers of systemic inflammation correlate with the loss of muscle mass and strength in the elderly. More direct evidence is that compared with skeletal muscle of young people, the number of macrophages is lower, the gene expression of several cytokines is higher, and stress signaling proteins are activated in skeletal muscle of elderly people at rest. Sarcopenia may also result from inadequate repair and chronic maladaptation following muscle injury in the elderly. Macrophage infiltration and the gene expression of certain cytokines are reduced in skeletal muscle of elderly people compared with young people following exercise-induced muscle injury. Further research is required to identify the cause(s) of inflammation in skeletal muscle of elderly people. Additional work is also needed to expand our understanding of the cells, proteins, and transcription factors that regulate inflammation in the skeletal muscle of elderly people at rest and after exercise. This knowledge is critical for devising strategies to restrict sarcopenia, and improve the health of today's elderly population.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

After more than 25 years of published investigation, including randomized controlled trials, the role of omega-3 polyunsaturated fatty acids in the treatment of kidney disease remains unclear. In vitro and in vivo experimental studies support the efficacy of omega-3 polyunsaturated fatty acids on inflammatory pathways involved with the progression of kidney disease. Clinical investigations have focused predominantly on immunoglobulin A (IgA) nephropathy. More recently, lupus nephritis, polycystic kidney disease, and other glomerular diseases have been investigated. Clinical trials have shown conflicting results for the efficacy of omega-3 polyunsaturated fatty acids in IgA nephropathy, which may relate to varying doses, proportions of eicosapentaenoic acid and docosahexaenoic acid, duration of therapy, and sample size of the study populations. Meta-analyses of clinical trials using omega-3 polyunsaturated fatty acids in IgA nephropathy have been limited by the quality of available studies. However, guidelines suggest that omega-3 polyunsaturated fatty acids should be considered in progressive IgA nephropathy. Omega-3 polyunsaturated fatty acids decrease blood pressure, a known accelerant of kidney disease progression. Well-designed, adequately powered, randomized, controlled clinical trials are required to further investigate the potential benefits of omega-3 polyunsaturated fatty acids on the progression of kidney disease and patient survival.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the effect of carbohydrate ingestion after maximal lengthening contractions of the knee extensors on circulating concentrations of myocellular proteins and cytokines, and cytokine mRNA expression in muscle. Using a cross-over design, 10 healthy males completed 5 sets of 10 lengthening (eccentric) contractions (unilateral leg press) at 120% 1 repetition-maximum. Subjects were randomized to consume a carbohydrate drink (15% weight per volume; 3 g/kg BM) for 3 h after exercise using one leg, or a placebo drink after exercise using the contralateral leg on another day. Blood samples (10 mL) were collected before exercise and after 0, 30, 60, 90, 120, 150, and 180 min of recovery. Muscle biopsies (vastus lateralis) were collected before exercise and after 3 h of recovery. Following carbohydrate ingestion, serum concentrations of glucose (30-90 min and at 150 min) and insulin (30-180 min) increased (P < 0.05) above pre-exercise values. Serum myoglobin concentration increased (similar to 250%; P < 0.05) after both trials. In contrast, serum cytokine concentrations were unchanged throughout recovery in both trials. Muscle mRNA expression for IL-8 (6.4-fold), MCP-1 (4.7-fold), and IL-6 (7.3-fold) increased substantially after carbohydrate ingestion. TNF-alpha mRNA expression did not change after either trial. Carbohydrate ingestion during early recovery from exercise-induced muscle injury may promote proinflammatory reactions within skeletal muscle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of increased training (IT) load on plasma concentrations of lipopolysaccharides (LPS), proinflammatory cytokines, and anti-LPS antibodies during exercise in the heat were investigated in 18 male runners, who performed 14 days of normal training (NT) or 14 days of 20% IT load in 2 equal groups. Before (trial 1) and after (trial 2) the training intervention, all subjects ran at 70% maximum oxygen uptake on a treadmill under hot (35 degrees C) and humid (similar to 40%) conditions, until core temperature reached 39.5 degrees C or volitional exhaustion. Venous blood samples were drawn before, after, and 1.5 h after exercise. Plasma LPS concentration after exercise increased by 71% (trial 1, p < 0.05) and 21% (trial 2) in the NT group and by 92% (trial 1, p < 0.01) and 199% (trial 2, p < 0.01) in the IT group. Postintervention plasma LPS concentration was 35% lower before exercise (p < 0.05) and 47% lower during recovery (p < 0.01) in the IT than in the NT group. Anti-LPS IgM concentration during recovery was 35% lower in the IT than in the NT group (p < 0.05). Plasma interleukin (IL)-6 and tumor necrosis factor (TNF)-alpha concentrations after exercise (IL-6, 3-7 times, p < 0.01, and TNF-alpha, 33%, p < 0.01) and during recovery (IL-6, 2-4 times, p < 0.05, and TNF-alpha, 30%, p < 0.01) were higher than at rest within each group. These data suggest that a short-term tolerable increase in training load may protect against developing endotoxemia during exercise in the heat.