753 resultados para Pathogenicity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The type III secretion system (T3SS) encoded by Salmonella Pathogenicity Island 2 (SPI2) is essential for virulence and intracellular proliferation of Salmonella enterica. We have previously identified SPI2-encoded proteins that are secreted and function as a translocon for the injection of effector proteins. Here, we describe the formation of a novel SPI2-dependent appendage structure in vitro as well as on the surface of bacteria that reside inside a vacuole of infected host cells. In contrast to the T3SS of other pathogens, the translocon encoded by SPI2 is only present singly or in few copies at one pole of the bacterial cell. Under in vitro conditions, appendages are composed of a filamentous needle-like structure with a diameter of 10 nm that was sheathed with secreted protein. The formation of the appendage in vitro is dependent on acidic media conditions. We analyzed SPI2-encoded appendages in infected cells and observed that acidic vacuolar pH was not required for induction of SPI2 gene expression, but was essential for the assembly of these structures and their function as translocon for delivery of effector proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The type III secretion system (T3SS) encoded by the Salmonella pathogenicity island 2 (SPI2) has a central role in systemic infections by Salmonella enterica and for the intracellular phenotype. Intracellular S. enterica uses the SPI2-encoded T3SS to translocate a set of effector proteins into the host cell, which modify host cell functions, enabling intracellular survival and replication of the bacteria. We sought to determine whether specific functions of the SPI2-encoded T3SS can be transferred to heterologous hosts Salmonella bongori and Escherichia coli Mutaflor, species that lack the SPI2 locus and loci encoding effector proteins. The SPI2 virulence locus was cloned and functionally expressed in S. bongori and E. coli. Here, we demonstrate that S. bongori harboring the SPI2 locus is capable of secretion of SPI2 substrate proteins under culture conditions, as well as of translocation of effector proteins under intracellular conditions. An SPI2-mediated cellular phenotype was induced by S. bongori harboring the SPI2 if the sifA locus was cotransferred. An interference with the host cell microtubule cytoskeleton, a novel SPI2-dependent phenotype, was observed in epithelial cells infected with S. bongori harboring SPI2 without additional effector genes. S. bongori harboring SPI2 showed increased intracellular persistence in a cell culture model, but SPI2 transfer was not sufficient to confer to S. bongori systemic pathogenicity in a murine model. Transfer of SPI2 to heterologous hosts offers a new tool for the study of SPI2 functions and the phenotypes of individual effectors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Salmonella typhimurium causes an invasive disease in mice that has similarities to human typhoid. A type III protein secretion system encoded by Salmonella pathogenicity island 2 (SPI2) is essential for virulence in mice, as well as survival and multiplication within macrophages. Reactive nitrogen intermediates (RNI) synthesized by inducible nitric oxide synthase (iNOS) are involved in the control of intracellular pathogens, including S. typhimurium. We studied the effect of Salmonella infection on iNOS activity in macrophages. Immunofluorescence microscopy demonstrated efficient colocalization of iNOS with bacteria deficient in SPI2 but not wild-type Salmonella, and suggests that the SPI2 system interferes with the localization of iNOS and Salmonella. Furthermore, localization of nitrotyrosine residues in the proximity was observed for SPI2 mutant strains but not wild-type Salmonella, indicating that peroxynitrite, a potent antimicrobial compound, is excluded from Salmonella-containing vacuoles by action of SPI2. Altered colocalization of iNOS with intracellular Salmonella required the function of the SPI2-encoded type III secretion system, but not of an individual "Salmonella translocated effector." Inhibition of iNOS increased intracellular proliferation of SPI2 mutant bacteria and, to a lesser extent, of wild-type Salmonella. The defect in systemic infection of a SPI2 mutant strain was partially restored in iNOS(-/-) mice. In addition to various strategies to detoxify RNI or repair damage due to RNI, avoidance of colocalization with RNI is important in adaptation of a pathogen to an intracellular life style.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Curcumin has gained immense importance for its vast therapeutic and prophylactic applications. Contrary to this, our study reveals that it regulates the defense pathways of Salmonella enterica serovar Typhimurium ( S. Typhimurium) to enhance its pathogenicity. In a murine model of typhoid fever, we observed higher bacterial load in Peyer's,patches, mesenteric lymph node, spleen and liver, when infected with curcumin-treated Salmonella. Curcumin increased the resistance of S. Typhimurium against antimicrobial agents like antimicrobial peptides, reactive oxygen and nitrogen species. This increased tolerance might be attributed to the up-regulation of genes involved in resistance against antimicrobial peptides - pmrD and pmrHFIJKLM and genes with antioxidant function - mntH, sodA and sitA. We implicate that iron chelation property of curcumin have a role in regulating mntH and sitA. Interestingly, we see that the curcumin-mediated modulation of pmr genes is through the PhoPQ regulatory system. Curcumin downregulates SPI1 genes, required for entry into epithelial cells and upregulates SPI2 genes required to intracellular survival. Since it is known that the SPI1 and SPI2 system can be regulated by the PhoPQ system, this common regulator could explain curcumin's mode of action. This data urges us to rethink the indiscriminate use of curcumin especially during Salmonella outbreaks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Superoxide dismutase has been discovered within the periplasm of several Gram-negative pathogens. We studied the Cu,Zn-SOD enzyme in Escherichia coli isolated from clinical samples (stool samples) collected from patients suffering from diarrhea. Antibiogram studies of the isolates were carried out to determine the sensitive and resistant strains. The metal co-factor present in the enzyme was confirmed by running samples in native gels and inhibiting with 2 mM potassium cyanide. A 519 bp sodC gene was amplified from resistant and sensitive strains of Escherichia coli. Cloning and sequencing of the sodC gene indicated variation in the protein and amino acid sequences of sensitive and resistant isolates. The presence of sodC in highly resistant Escherichia coli isolates from diarrheal patients indicates that sodC may play role in enhancing the pathogenicity by protecting cells from exogenous sources of superoxide, such as the oxidative burst of phagocytes. The presence of SodC could be one of the factors for bacterial virulence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tug of war between a pathogen and its host has been one of the most amazing stories in the field of microbial pathogenesis for ages. The strongest known species of all living organisms is the Homo sapiens and yet it is incredible how a pathogen of the size of few microns is smart enough to defeat this mightiest group of survivors. It is of utmost interest to understand the mechanisms behind the successful habitation of a pathogen inside the ever-resisting and complicate human body. Numerous examples of diseases caused by such pathogens exist which intrigues us to venture in the world of host-pathogen interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intracellular pathogens such as Salmonella enterica serovar Typhimurium (S. Typhimurium) manipulate their host cells through the interplay of various virulence factors. A multitude of such virulence factors are encoded on the genome of S. Typhimurium and are usually organized in pathogenicity islands. The virulence-associated genomic stretch of STM3117-3120 has structural features of pathogenicity islands and is present exclusively in non-typhoidal serovars of Salmonella. It encodes metabolic enzymes predicted to be involved in methylglyoxal metabolism. STM3117-encoded lactoylglutathione lyase significantly impacts the proliferation of intracellular Salmonella. The deletion mutant of STM3117 (Delta lgl) fails to grow in epithelial cells but hyper-replicates in macrophages. This difference in proliferation outcome was the consequence of failure to detoxify methylglyoxal by Delta lgl, which was also reflected in the form of oxidative DNA damage and upregulation of kefB in the mutant. Within macrophages, the toxicity of methylglyoxal adducts elicits the potassium efflux channel (KefB) in the mutant which subsequently modulates the acidification of mutant-containing vacuoles (MCVs). The perturbation in the pH of the MCV milieu and bacterial cytosol enhances the Salmonella pathogenicity island 2 translocation in Delta lgl, increasing its net growth within macrophages. In epithelial cells, however, the maturation of Delta lgl-containing vacuoles were affected as these non-phagocytic cells maintain less acidic vacuoles compared to those in macrophages. Remarkably, ectopic expression of Toll-like receptors 2 and 4 on epithelial cells partially restored the survival of Delta lgl. This study identified a novel metabolic enzyme in S. Typhimurium whose activity during intracellular infection within a given host cell type differentially affected the virulence of the bacteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Serovars of Salmonella enterica, namely Typhi and Typhimurium, reportedly, are the bacterial pathogens causing systemic infections like gastroenteritis and typhoid fever. To elucidate the role and importance in such infection, the proteins of the Type III secretion system of Salmonella pathogenicity islands and two component signal transduction systems, have been mainly focused. However, the most indispensable of these virulent ones and their hierarchical role has not yet been studied extensively. Results: We have adopted a theoretical approach to build an interactome comprising the proteins from the Salmonella pathogeneicity islands (SPI) and two component signal transduction systems. This interactome was then analyzed by using network parameters like centrality and k-core measures. An initial step to capture the fingerprint of the core network resulted in a set of proteins which are involved in the process of invasion and colonization, thereby becoming more important in the process of infection. These proteins pertained to the Inv, Org, Prg, Sip, Spa, Ssa and Sse operons along with chaperone protein SicA. Amongst them, SicA was figured out to be the most indispensable protein from different network parametric analyses. Subsequently, the gene expression levels of all these theoretically identified important proteins were confirmed by microarray data analysis. Finally, we have proposed a hierarchy of the proteins involved in the total infection process. This theoretical approach is the first of its kind to figure out potential virulence determinants encoded by SPI for therapeutic targets for enteric infection. Conclusions: A set of responsible virulent proteins was identified and the expression level of their genes was validated by using independent, published microarray data. The result was a targeted set of proteins that could serve as sensitive predictors and form the foundation for a series of trials in the wet-lab setting. Understanding these regulatory and virulent proteins would provide insight into conditions which are encountered by this intracellular enteric pathogen during the course of infection. This would further contribute in identifying novel targets for antimicrobial agents. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacterial biofilms display a collective lifestyle, wherein the cells secrete extracellular polymeric substances (EPS) that helps in adhesion, aggregation, stability, and to protect the bacteria from antimicrobials. We asked whether the BPS could act as a public good for the biofilm and observed that infiltration of cells that do not produce matrix components weakened the biofilm of Salmonella enterica serovar Typhimurium. PS production was costly for the producing cells, as indicated by a significant reduction in the fitness of wild type (WT) cells during competitive planktonic growth relative to the non-producers. Infiltration frequency of non-producers in the biofilm showed a concomitant decrease in overall productivity. It was apparent in the confocal images that the non producing cells benefit from the BPS produced by the Wild Type (WT) to stay in the biofilm. The biofilm containing non-producing cells were more significantly susceptible to sodium hypochlorite and ciprofloxacin treatment than the WT biofilm. Biofilm infiltrated with non-producers delayed the pathogenesis, as tested in a murine model. The cell types were spatially assorted, with non producers being edged out in the biofilm. However, cellulose was found to act as a barrier to keep the non-producers away from the WT microcolony. Our results show that the infiltration of non-cooperating cell types can substantially weaken the biofilm making it vulnerable to antibacterials and delay their pathogenesis. Cellulose, a component of BPS, was shown to play a pivotal role of acting as the main public good, and to edge-out the non-producers away from the cooperating microcolony.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BipA is a novel member of the ribosome binding GTPase superfamily and is widely distributed in bacteria and plants. We report here that it regulates -multiple cell surface- and virulence-associated -components in the enteropathogenic Escherichia coli (EPEC) strain E2348/69. The regulated components include bacterial flagella, the espC pathogenicity island and a type III secretion system specified by the locus of enterocyte effacement (LEE). BipA positively regulated the espC and LEE gene clusters through transcriptional control of the LEE-encoded regulator, Ler. Additionally, it affected the pattern of proteolysis of intimin, a key LEE-encoded adhesin specified by the LEE. BipA control of the LEE operated independently of the previously characterized regulators Per, integration host factor and H-NS. In contrast, it negatively regulated the flagella-mediated motility of EPEC and in a Ler-independent manner. Our results indicate that the BipA GTPase functions high up in diverse regulatory cascades to co-ordinate the expression of key pathogenicity islands and other virulence-associated factors in E. coli.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abrasion, feeding, injection and immersion methods were used to evaluate the pathogenicity of five different strains of Aeromonas hydrophila viz. RG (rui gill), ML (mrigal lesion), SG (sharpunti gill), F1K (mrigal kidney), GFL (gold fish lesion) and Ah-19 (Aeromonas hydrophila-19, Ref. Strain) against C. mrigala H. Bacterial suspension containing viable cells of 7.5x 10⁵ per ml was found to be very effective in intramuscular injection and feeding resulting 100% mortality after 96hr of inoculation. The strain RG, ML and F1K produced scale loss with erosion of the skin surface with/without hemorrhagic lesion after 48hr of inoculation following abrasion method. The strains SG and Ah-19 resulting scale loss with erosion of the skin surface with/without hemorrhagic lesion after 72hr of inoculation following abrasion and injection methods. SG and F1K caused reddening in mouth region after 72hr of feeding inoculation, whereas RG resulted frank ulcers from eroded dermal layer exposing underlying musculature which was hemorrhagic after 96hr of inoculation by abrasion method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Five isolates of Aeromonas sobria, collected from the diseased fish were selected for detection the pathogenicity following water-born infection method on silver barbs (Barbodes gonionotus) at the selected exposure dose 2.5x10⁸ CFU/ml which was standardized by preliminary test. In the experimental condition lesion and mortality were found in fishes. Among the isolate, Ass17 Ass19, Ass31 and Ass36 were successfully infected 20-60% fishes. Another isolate Ass20 was found non-pathogenic. Drug sensitivity test was performed by six antibiotics viz. Oxytetracycline, Oxolinic acid, Chloramphenicol, Stilphamethozazole, Streptomycin, Erythromycin. All the isolates showed variable reaction patterns to antibiotics. Most of the isolates were found sensitive to Oxytetracycline (OT), Oxolinic acid (OA) and Chloramphenicol (C) but resistance to Erythromycin and Sulphamethoxazole (SXT). Isolate Ass31 found resistant to Oxolinic acid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Temperature effect on the pathogenicity of selected Edwardsiella tarda V-1 strain to Japanese eel, Anguilla japonica was investigated. To evaluate the effects of both pathogen incubation temperature and fish cultivation temperature on pathogen pathogenicity a two-factor design was conducted. E. tarda was incubated at 15, 20, 25, 30 and 37±1°C, and the fish (mean weight: 100g) were reared at 15, 20, 25 and 28±1°C respectively. The fish reared at different temperatures were infected with the E. tarda incubated at different temperatures. The results of a 4-day LD50 test showed that temperature significantly affected the pathogenicity of E. tarda (p<0.01) and the interaction between the two factors was also significant (p<0.01). For fish reared at 20°C the pathogenicity of E. tarda was the highest at 30°C of pathogen incubation. When the fish rearing temperature was raised to 25 and 28°C, the pathogenicity of E. tarda incubated at all temperatures increased. Isolation testing demonstrated results similar to those of LD50. The selected isolate was virulent to eel, but pathogenicity varied with temperature.