983 resultados para Path Planning


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Covertly tracking mobile targets, either animal or human, in previously unmapped outdoor natural environments using off-road robotic platforms requires both visual and acoustic stealth. Whilst the use of robots for stealthy surveillance is not new, the majority only consider navigation for visual covertness. However, most fielded robotic systems have a non-negligible acoustic footprint arising from the onboard sensors, motors, computers and cooling systems, and also from the wheels interacting with the terrain during motion. This time-varying acoustic signature can jeopardise any visual covertness and needs to be addressed in any stealthy navigation strategy. In previous work, we addressed the initial concepts for acoustically masking a tracking robot’s movements as it travels between observation locations selected to minimise its detectability by a dynamic natural target and ensuring con- tinuous visual tracking of the target. This work extends the overall concept by examining the utility of real-time acoustic signature self-assessment and exploiting shadows as hiding locations for use in a combined visual and acoustic stealth framework.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis is a study of new design methods for allowing evolutionary algorithms to be more effectively utilised in aerospace optimisation applications where computation needs are high and computation platform space may be restrictive. It examines the applicability of special hardware computational platforms known as field programmable gate arrays and shows that with the right implementation methods they can offer significant benefits. This research is a step forward towards the advancement of efficient and highly automated aircraft systems for meeting compact physical constraints in aerospace platforms and providing effective performance speedups over traditional methods.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

В статье представлено развитие принципа построения автоматической пилотажно-навигационной системы (АПНС) для беспилотного летательного аппарата (БЛА). Принцип заключается в синтезе комплексных систем управления БПЛА не только на основе использования алгоритмов БИНС, но и алгоритмов, объединяющих в себе решение задач формирования и отработки сформированной траектории резервированной системой управления и навигации. Приведены результаты аналитического исследования и данные летных экспериментов разработанных алгоритмов АПНС БЛА, обеспечивающих дополнительное резервирование алгоритмов навигации и наделяющих БЛА новым функциональной способностью по выходу в заданную точку пространства с заданной скоростью в заданный момент времени с учетом атмосферных ветровых возмущений. Предложена и испытана методика идентификации параметров воздушной атмосферы: направления и скорости W ветра. Данные летных испытаний полученного решения задачи терминальной навигации демонстрируют устойчивую работу синтезированных алгоритмов управления в различных метеоусловиях. The article presents a progress in principle of development of automatic navigation management system (ANMS) for small unmanned aerial vehicle (UAV). The principle defines a development of integrated control systems for UAV based on tight coupling of strap down inertial navigation system algorithms and algorithms of redundant flight management system to form and control flight trajectory. The results of the research and flight testing of the developed ANMS UAV algorithms are presented. The system demonstrates advanced functional redundancy of UAV guidance. The system enables new UAV capability to perform autonomous multidimensional navigation along waypoints with controlled speed and time of arrival taking into account wind. The paper describes the technique for real-time identification of atmosphere parameters such as wind direction and wind speed. The flight test results demonstrate robustness of the algorithms in diverse meteorological conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have developed a Hierarchical Look-Ahead Trajectory Model (HiLAM) that incorporates the firing pattern of medial entorhinal grid cells in a planning circuit that includes interactions with hippocampus and prefrontal cortex. We show the model’s flexibility in representing large real world environments using odometry information obtained from challenging video sequences. We acquire the visual data from a camera mounted on a small tele-operated vehicle. The camera has a panoramic field of view with its focal point approximately 5 cm above the ground level, similar to what would be expected from a rat’s point of view. Using established algorithms for calculating perceptual speed from the apparent rate of visual change over time, we generate raw dead reckoning information which loses spatial fidelity over time due to error accumulation. We rectify the loss of fidelity by exploiting the loop-closure detection ability of a biologically inspired, robot navigation model termed RatSLAM. The rectified motion information serves as a velocity input to the HiLAM to encode the environment in the form of grid cell and place cell maps. Finally, we show goal directed path planning results of HiLAM in two different environments, an indoor square maze used in rodent experiments and an outdoor arena more than two orders of magnitude larger than the indoor maze. Together these results bridge for the first time the gap between higher fidelity bio-inspired navigation models (HiLAM) and more abstracted but highly functional bio-inspired robotic mapping systems (RatSLAM), and move from simulated environments into real-world studies in rodent-sized arenas and beyond.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A coverage algorithm is an algorithm that deploys a strategy as to how to cover all points in terms of a given area using some set of sensors. In the past decades a lot of research has gone into development of coverage algorithms. Initially, the focus was coverage of structured and semi-structured indoor areas, but with time and development of better sensors and introduction of GPS, the focus has turned to outdoor coverage. Due to the unstructured nature of an outdoor environment, covering an outdoor area with all its obstacles and simultaneously performing reliable localization is a difficult task. In this paper, two path planning algorithms suitable for solving outdoor coverage tasks are introduced. The algorithms take into account the kinematic constraints of an under-actuated car-like vehicle, minimize trajectory curvatures, and dynamically avoid detected obstacles in the vicinity, all in real-time. We demonstrate the performance of the coverage algorithm in the field by achieving 95% coverage using an autonomous tractor mower without the aid of any absolute localization system or constraints on the physical boundaries of the area.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we present for the first time a complete symbolic navigation system that performs goal-directed exploration to unfamiliar environments on a physical robot. We introduce a novel construct called the abstract map to link provided symbolic spatial information with observed symbolic information and actual places in the real world. Symbolic information is observed using a text recognition system that has been developed specifically for the application of reading door labels. In the study described in this paper, the robot was provided with a floor plan and a destination. The destination was specified by a room number, used both in the floor plan and on the door to the room. The robot autonomously navigated to the destination using its text recognition, abstract map, mapping, and path planning systems. The robot used the symbolic navigation system to determine an efficient path to the destination, and reached the goal in two different real-world environments. Simulation results show that the system reduces the time required to navigate to a goal when compared to random exploration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper describes current research at the Australian Centre for Field Robotics (ACFR) in collaboration with the Commonwealth Scientific and Industrial Research Organisation (CSIRO) within the Cooperative Research Centre (CRC) for Mining Technology and Equipment (CMTE) towards achieving autonomous navigation of underground vehicles, like a Load-Haul-Dump (LHD) truck. This work is being sponsored by the mining industry through the Australian Mineral Industries Research Association Limited (AMIRA). Robust and reliable autonomous navigation can only be realised by achieving high level tasks such as path-planning and obstacle avoidance. This requires determining the pose (position and orientation) of the vehicle at all times. A minimal infrastructure localisation algorithm that has been developed for this purpose is outlined and the corresponding results are presented. Further research issues that are under investigation are also outlined briefly.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper compares different state-of-the-art exploration strategies for teams of mobile robots exploring an unknown environment. The goal is to help in determining a best strategy for a given multi-robot scenario and optimization target. Experiments are done in a 2D-simulation environment with 5 robots that are equipped with a horizontal laser range finder. Required components like SLAM, path planning and obstacle avoidance of every robot are included in a full-system simulation. To evaluate different strategies the time to finish exploration, the number of measurements that have been integrated into the map and the development in size of the explored area over time are used. The results of extensive test runs on three environments with different characteristics show that simple strategies can perform fairly well in many situations but specialized strategies can improve performance with regards to their targeted evaluation measure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A key component of robotic path planning is ensuring that one can reliably navigate a vehicle to a desired location. In addition, when the features of interest are dynamic and move with oceanic currents, vehicle speed plays an important role in the planning exercise to ensure that vehicles are in the right place at the right time. Aquatic robot design is moving towards utilizing the environment for propulsion rather than traditional motors and propellers. These new vehicles are able to realize significantly increased endurance, however the mission planning problem, in turn, becomes more difficult as the vehicle velocity is not directly controllable. In this paper, we examine Gaussian process models applied to existing wave model data to predict the behavior, i.e., velocity, of a Wave Glider Autonomous Surface Vehicle. Using training data from an on-board sensor and forecasting with the WAVEWATCH III model, our probabilistic regression models created an effective method for forecasting WG velocity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The world is rich with information such as signage and maps to assist humans to navigate. We present a method to extract topological spatial information from a generic bitmap floor plan and build a topometric graph that can be used by a mobile robot for tasks such as path planning and guided exploration. The algorithm first detects and extracts text in an image of the floor plan. Using the locations of the extracted text, flood fill is used to find the rooms and hallways. Doors are found by matching SURF features and these form the connections between rooms, which are the edges of the topological graph. Our system is able to automatically detect doors and differentiate between hallways and rooms, which is important for effective navigation. We show that our method can extract a topometric graph from a floor plan and is robust against ambiguous cases most commonly seen in floor plans including elevators and stairwells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This report describes the development and simulation of a variable rate controller for a 6-degree of freedom nonlinear model. The variable rate simulation model represents an off the shelf autopilot. Flight experiment involves risks and can be expensive. Therefore a dynamic model to understand the performance characteristics of the UAS in mission simulation before actual flight test or to obtain parameters needed for the flight is important. The control and guidance is implemented in Simulink. The report tests the use of the model for air search and air sampling path planning. A GUI in which a set of mission scenarios, in which two experts (mission expert, i.e. air sampling or air search and an UAV expert) interact, is presented showing the benefits of the method.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This research deals with the development of a Solar-Powered UAV designed for remote sensing, in particular to the development of the autopilot sub-system and path planning. The design of the Solar-Powered UAS followed a systems engineering methodology, by first defining system architecture, and selecting each subsystem. Validation tests and integration of autopilot is performed, in order to evaluate the performances of each subsystem and to obtain a global operational system for data collection missions. The flight tests planning and simulation results are also explored in order to verify the mission capabilities using an autopilot on a UAS. The important aspect of this research is to develop a Solar-Powered UAS for the purpose of data collection and video monitoring, especially data and images from the ground; transmit to the GS (Ground Station), segment the collected data, and afterwards analyze it with a Matlab code.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Robotic vision is limited by line of sight and onboard camera capabilities. Robots can acquire video or images from remote cameras, but processing additional data has a computational burden. This paper applies the Distributed Robotic Vision Service, DRVS, to robot path planning using data outside line-of-sight of the robot. DRVS implements a distributed visual object detection service to distributes the computation to remote camera nodes with processing capabilities. Robots request task-specific object detection from DRVS by specifying a geographic region of interest and object type. The remote camera nodes perform the visual processing and send the high-level object information to the robot. Additionally, DRVS relieves robots of sensor discovery by dynamically distributing object detection requests to remote camera nodes. Tested over two different indoor path planning tasks DRVS showed dramatic reduction in mobile robot compute load and wireless network utilization.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper describes an algorithm for ``direct numerical integration'' of the initial value Differential-Algebraic Inequalities (DAI) in a time stepping fashion using a sequential quadratic programming (SQP) method solver for detecting and satisfying active path constraints at each time step. The activation of a path constraint generally increases the condition number of the active discretized differential algebraic equation's (DAE) Jacobian and this difficulty is addressed by a regularization property of the alpha method. The algorithm is locally stable when index 1 and index 2 active path constraints and bounds are active. Subject to available regularization it is seen to be stable for active index 3 active path constraints in the numerical examples. For the high index active path constraints, the algorithm uses a user-selectable parameter to perturb the smaller singular values of the Jacobian with a view to reducing the condition number so that the simulation can proceed. The algorithm can be used as a relatively cheaper estimation tool for trajectory and control planning and in the context of model predictive control solutions. It can also be used to generate initial guess values of optimization variables used as input to inequality path constrained dynamic optimization problems. The method is illustrated with examples from space vehicle trajectory and robot path planning.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Much of the benefits of deploying unmanned aerial vehicles can be derived from autonomous missions. For such missions, however, sense-and-avoid capability (i.e., the ability to detect potential collisions and avoid them) is a critical requirement. Collision avoidance can be broadly classified into global and local path-planning algorithms, both of which need to be addressed in a successful mission. Whereas global path planning (which is mainly done offline) broadly lays out a path that reaches the goal point, local collision-avoidance algorithms, which are usually fast, reactive, and carried out online, ensure safety of the vehicle from unexpected and unforeseen obstacles/collisions. Even though many techniques for both global and local collision avoidance have been proposed in the recent literature, there is a great interest around the globe to solve this important problem comprehensively and efficiently and such techniques are still evolving. This paper presents a brief overview of a few promising and evolving ideas on collision avoidance for unmanned aerial vehicles, with a preferential bias toward local collision avoidance.