9 resultados para Passivhaus


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Questa Tesi approfondisce lo standard Passivhaus, un metodo sviluppato originariamente in Germania nella seconda metà degli anni ’80 ed ora diffuso in tutta Europa, con l’obiettivo di favorire la realizzazione di edifici in grado di fornire ottimi livelli di comfort con consumi energetici pari quasi a zero. Questo standard abitativo mi ha appassionato a tal punto che ho deciso di farne oggetto della mia tesi di laurea. Da diversi anni stiamo assistendo ad una serie di mutamenti climatici che stanno modificando la vita sul nostro pianeta e portano a considerare tutta una serie di cambiamento sul nostro modo di vivere. La casa passiva, a mio parere, è un concetto valido e utile a contenere questa situazione. In altre zone d’Europa, con climi invernali rigidi ma condizioni estive meno gravose delle nostre, è uno standard piuttosto diffuso e qui cercherò di formulare un’analisi quanto più vicina alla realtà riguardo all’adattabilità della Passivhaus al nostro clima. Lo scopo è quello di capire come si comporta questo tipo di edifici in ambienti climatici diversi da quelli per cui lo standard è stato progettato. Per verificarne l’efficacia, verrà studiato nel dettaglio il primo edificio residenziale multipiano recentemente costruito a Cesena e certificato Passivhaus. Successivamente, sarà simulata la realizzazione dello stesso edificio in dieci diverse località italiane, con differenti condizioni climatiche, e ne saranno verificate le prestazioni energetiche tramite un software di modellazione in regime dinamico. Se risulterà necessario a seguito delle verifiche, saranno progettate le modifiche alle soluzioni costruttive che permettano di raggiungere i livelli previsti dallo standard Passivhaus in tutte le località. I risultati della simulazione saranno infine confrontati e commentati nella parte conclusiva della Tesi.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[ES]Este trabajo tiene como objetivo analizar los distintos criterios empleados en el diseño sostenible de viviendas mediante el uso de indicadores. Para lograr un enfoque más práctico, se ha partido del estudio del proyecto de construcción de una vivienda de tipo Passivhaus en Junguitu, localidad próxima a Vitoria-­‐Gasteiz. Dicho proyecto se ha dividido en once puntos: orientación del edificio, compacidad, aislamiento térmico, inercia térmica, puentes térmicos, estanqueidad al aire, sistema de ventilación, sistema de calefacción, ventanas, puerta entrada a vivienda y instalación eléctrica. En cada uno de ellos se han analizado las distintas soluciones de instalaciones y los criterios establecidos para la obtención del sistema que más se ajusta a las necesidades del edificio.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Social and political concerns are frequently reflected in the design of school buildings, often in turn leading to the development of technical innovations. One example is a recurrent concern about the physical health of the nation, which has at several points over the last century prompted new design approaches to natural light and ventilation. The most critical concern of the current era is the global, rather than the indoor, environment. The resultant political focus on mitigating climate change has resulted in new regulations, and in turn considerable technical changes in building design and construction. The vanguard of this movement has again been in school buildings, set the highest targets for reducing operational carbon by the previous Government. The current austerity measures have moved the focus to the refurbishment and retrofit of existing buildings, in order to bring them up to the exacting new standards. Meanwhile there is little doubt that climate change is happening already, and that the impacts will be considerable. Climate scientists have increasing confidence in their predictions for the future; if today’s buildings are to be resilient to these changes, building designers will need to understand and design for the predicted climates in order to continue to provide comfortable and healthy spaces through the lifetimes of the buildings. This paper describes the decision processes, and the planned design measures, for adapting an existing school for future climates. The project is at St Faith’s School in Cambridge, and focuses on three separate buildings: a large Victorian block built as a substantial domestic dwelling in 1885, a smaller single storey 1970s block with a new extension, and an as-yet unbuilt single storey block designed to passivhaus principles and using environmentally friendly materials. The implications of climate change have been considered for the three particular issues of comfort, construction, and water, as set out in the report on Design for Future Climate: opportunities for adaptation in the built environment (Gething, 2010). The adaptation designs aim to ensure each of the three very different buildings remains fit for purpose throughout the 21st century, continuing to provide a healthy environment for the children. A forth issue, the reduction of carbon and the mitigation of other negative environmental impacts of the construction work, is also a fundamental aim for the school and the project team. Detailed modelling of both the operational and embodied energy and carbon of the design options is therefore being carried out, in order that the whole life carbon costs of the adaptation design options may be minimised. The project has been funded by the Technology Strategy Board as part of the Design for Future Climates programme; the interdisciplinary team includes the designers working on the current school building projects and the school bursar, supported by researchers from the University of Cambridge Centre for Sustainable Development. It is hoped that lessons from the design process, as well as the solutions themselves, will be transferable to other buildings in similar climatic regions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports the findings of research on the environmental performance of two case-study houses, a retrofit and new build. The retrofit was completed to a Passivhaus standard while the new build was completed to current Irish building regulations. Environmental performance of the retrofit and new build was measured using life-cycle assessments, examining the assembly, operational and end-of-life stage over life spans of 50 and 80 years. Using primary information, life-cycle assessment software and life-cycle assessment databases the environmental impacts of each stage were modelled. The operational stage of both case studies was found to be the source of the most significant environmental damage, followed by the assembly and the end-of-life stage respectively. The relative importance of the assembly and end-of-life stage decreased as the life span increased. It was found that the retrofit house studied outperformed the new build in the assembly and operational stage, whereas the new build performed better in the end-of-life stage; however, this is highly sensitive, depending on the standards to which both are completed. Operational energy savings pre- and post-retrofit were significant, indicating the future potential for adoption of high-quality retrofitting practices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El término Passivhaus es entendido como un estándar de construcción, basado en la arquitectura sostenible, es decir, busca que el edificio sea energéticamente eficiente, de gran confort interior, económicamente asequible y ecológico. Todos estos aspectos se trabajan simultáneamente a la hora de proyectar un edificio Passivhaus. En los últimos años el cambio climático se ha convertido en una de las preocupaciones a las que el sector de la construcción ha tenido que enfrentarse, dando soluciones tanto de ejecución como de diseño. En un marco de cambio climático, la Unión Europea ha lanzado una nueva normativa donde los edificios de consumo energético casi nulo se convierten en un tema de gran importancia y actualidad, puesto que cada país deberá responder a la normativa según sus condiciones climáticas. En este trabajo se ha estudiado el estándar Passivhaus y se han analizado varios edificios construidos bajo el estándar en diversas condiciones climáticas. Para este estudio se han realizado una serie de fichas para cada uno de los ejemplos, compuestas por una breve explicación del proyecto, datos generales del edificio, características del lugar, envolvente térmica, sistemas mecánicos y demandas obtenidas. En la explicación del proyecto, se exponen las distintas estrategias que se han tenido en cuenta a la hora de proyectar el edificio pasivo. A su vez, resulta de gran interés establecer una comparación entre las características de los proyectos Passivhaus de los diversos climas para así llegar a ciertas conclusiones, por lo que se aportan datos del lugar y climáticos, así como datos de la composición y transmitancias térmicas de las envolventes, soleras, cubiertas y ventanas. También son de gran importancia en los edificios Passivhaus, los sistemas mecánicos empleados, como el recuperador de calor, los empleados para la producción de ACS o calefacción, o el uso de energías renovables. En primer lugar se han estudiado cinco Passivhaus construidas en Alemania, puesto que este estándar se conformó bajo las exigencias climáticas de este país. A continuación, se han analizado ejemplos construidos en España, diferenciando entre los distintos climas que se dan en la Península, puesto que las respuestas constructivas dentro de la misma han de ser distintas. En ambos casos se explican las condiciones climáticas, así como las necesidades de los mismos y apoyándose de ejemplos para comparar cómo lo ha resuelto el estándar Passivhaus. Se ha podido concluir en este trabajo la importancia del clima local a la hora de establecer estrategias tanto constructivas como de proyecto. Mientras que las demandas energéticas deberán ser las mismas independientemente del lugar, las respuestas constructivas y de diseño tendrán que ser completamente distintas según las condiciones climáticas. Dicho esto, se deberán replantear las estrategias del estándar Passivhaus al aplicarlo en el clima mediterráneo. Al final del trabajo, se propone una serie de estrategias a seguir para la adaptación de este estándar al clima mediterráneo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Esta tesis trata sobre la construcción modular ligera, dentro del contexto de la eficiencia energética y de cara a los conceptos de nZEB (near Zero Energy Building) y NZEB (Net Zero Energy Building) que se manejan en el ámbito europeo y específicamente dentro del marco regulador de la Directiva 2010/31 UE. En el contexto de la Unión Europea, el sector de la edificación representa el 40% del total del consumo energético del continente. Asumiendo la necesidad de reducir este consumo se han planteado, desde los organismos de dirección europeos, unos objetivos (objetivos 20-20-20) para hacer más eficiente el parque edificatorio. Estos objetivos, que son vinculantes en términos de legislación, comprometen a todos los estados miembros a conseguir la meta de reducción de consumo y emisiones de GEI (Gases de Efecto Invernadero) antes del año 2020. Estos conceptos de construcción modular ligera (CML) y eficiencia energética no suelen estar asociados por el hecho de que este tipo de construcción no suele estar destinada a un uso intensivo y no cuenta con unos cerramientos con niveles de aislamiento de acuerdo a las normativas locales o códigos de edificación de cada país. El objetivo de nZEB o NZEB, e incluso Energy Plus, según sea el caso, necesariamente (y así queda establecido en las normativas), dependerá no sólo de la mejora de los niveles de aislamiento de los edificios, sino también de la implementación de sistemas de generación renovables, independientemente del tipo de sistema constructivo con el que se trabaje e incluso de la tipología edificatoria. Si bien es cierto que los niveles de industrialización de la sociedad tecnológica actual han alcanzado varias de las fases del proceso constructivo - sobre todo en cuanto a elementos compositivos de los edificios- también lo es el hecho de que las cotas de desarrollo conseguidas en el ámbito de la construcción no llegan al nivel de evolución que se puede apreciar en otros campos de las ingenierías como la aeronáutica o la industria del automóvil. Aunque desde finales del siglo pasado existen modelos y proyectos testimoniales de construcción industrializada ligera (CIL) e incluso ya a principios del siglo XX, ejemplos de construcción modular ligera (CML), como la Casa Voisin, la industrialización de la construcción de edificios no ha sido una constante progresiva con un nivel de comercialización equiparable al de la construcción masiva y pesada. Los términos construcción industrializada, construcción prefabricada, construcción modular y construcción ligera, no siempre hacen referencia a lo mismo y no siempre son sinónimos entre sí. Un edificio puede ser prefabricado y no ser modular ni ligero y tal es el caso, por poner un ejemplo, de la construcción con paneles de hormigón prefabricado. Lo que sí es una constante es que en el caso de la construcción modular ligera, la prefabricación y la industrialización, casi siempre vienen implícitas en muchos ejemplos históricos y actuales. Con relación al concepto de eficiencia energética (nZEB o incluso NZEB), el mismo no suele estar ligado a la construcción modular ligera y/o ligera industrializada; más bien se le ve unido a la idea de cerramientos masivos con gran inercia térmica propios de estándares de diseño como el Passivhaus; y aunque comúnmente a la construcción ligera se le asocian otros conceptos que le restan valor (corta vida útil; función y formas limitadas, fuera de todo orden estético; limitación en los niveles de confort, etc.), los avances que se van alcanzando en materia de tecnologías para el aprovechamiento de la energía y sistemas de generación renovables, pueden conseguir revertir estas ideas y unificar el criterio de eficiencia + construcción modular ligera. Prototipos y proyectos académicos– como el concurso Solar Decathlon que se celebra desde el año 2002 promovido por el DOE (Departamento de Energía de los Estados Unidos), y que cuenta con ediciones europeas como las de los años 2010 y 2012, replantean la idea de la construcción industrializada, modular y ligera dentro del contexto de la eficiencia energética, con prototipos de viviendas de ± 60m2, propuestos por las universidades concursantes, y cuyo objetivo es alcanzar y/o desarrollar el concepto de NZEB (Net Zero Energy Building) o edificio de energía cero. Esta opción constructiva no sólo representa durabilidad, seguridad y estética, sino también, rapidez en la fabricación y montaje, además de altas prestaciones energéticas como se ha podido demostrar en las sucesivas ediciones del Solar Decathlon. Este tipo de iniciativas de desarrollo de tecnologías constructivas, no sólo apuntan a la eficiencia energética sino al concepto global de energía neta, Energía plus o cero emisiones de CO2. El nivel de emisiones por la fabricación y puesta en obra de los materiales de construcción depende, en muchos casos, no solo de la propia naturaleza del material, sino también de la cantidad de recursos utilizados para producir una unidad de medida determinada (kg, m3, m2, ml, etc). En este sentido podría utilizarse, en muchos casos, el argumento válido de que a menos peso, y a menos tamaño, menos emisiones globales de gases de efecto invernadero y menos contaminación. Para el trabajo de investigación de esta tesis se han tomado como referencias válidas para estudio, prototipos tanto de CML (Modular 3D) como de CIL (panelizado y elementos 2D), dado que para los fines de análisis de las prestaciones energéticas de los materiales de cerramiento, ambos sistemas son equiparables. Para poder llegar a la conclusión fundamental de este trabajo de tesis doctoral - que consiste en demostrar la viabilidad tecnológica/ industrial que supone la combinación de la eficiencia energética y la construcción modular ligera - se parte del estudio del estado de la técnica ( desde la selección de los materiales y los posibles procesos de industrialización en fábrica, hasta su puesta en obra, funcionamiento y uso, bajo los conceptos de consumo cero, cero emisiones de carbono y plus energético). Además -y con un estado de la técnica que identifica la situación actual- se llevan a cabo pruebas y ensayos con un prototipo a escala natural y células de ensayo, para comprobar el comportamiento de los elementos compositivos de los mismos, frente a unas condicionantes climáticas determinadas. Este tipo de resultados se contrastan con los obtenidos mediante simulaciones informáticas basadas en los mismos parámetros y realizadas en su mayoría mediante métodos simplificados de cálculos, validados por los organismos competentes en materia de eficiencia energética en la edificación en España y de acuerdo a la normativa vigente. ABSTRACT This thesis discusses lightweight modular construction within the context of energy efficiency in nZEB (near Zero Energy Building) and NZEB (Net Zero Energy Building) both used in Europe and, specifically, within the limits of the regulatory framework of the EU Directive 2010/31. In the European Union the building sector represents 40% of the total energy consumption of the continent. Due to the need to reduce this consumption, European decision-making institutions have proposed aims (20-20-20 aims) to render building equipment more efficient. These aims are bound by law and oblige all member States to endeavour to reduce consumption and GEI emissions before the year 2020. Lightweight modular construction concepts and energy efficiency are not generally associated because this type of building is not normally meant for intensive use and does not have closures with insulation levels which fit the local regulations or building codes of each country. The objective of nZEB or NZEB and even Energy Plus, depending on each case, will necessarily be associated (as established in the guidelines) not only with the improvement of insulation levels in buildings, but also with the implementation of renewable systems of generation, independent of the type of building system used and of the building typology. Although it is true that the levels of industrialisation in the technological society today have reached several of the building process phases - particularly in the composite elements of buildings - it is also true that the quotas of development achieved in the area of construction have not reached the evolutionary levelfound in other fields of engineering, such as aeronautics or the automobile industry. Although there have been models and testimonial projects of lightweight industrialised building since the end of last century, even going back as far as the beginning of the XX century with examples of lightweight modular construction such as the Voisin House, industrialisation in the building industry has not been constant nor is its comercialisation comparable to massive and heavy construction. The terms industrialised building, prefabricated building, modular building and lightweight building, do not always refer to the same thing and they are not always synonymous. A building can be prefabricated yet not be modular or lightweight. To give an example, this is the case of building with prefabricated concrete panels. What is constant is that, in the case of lightweight modular construction, prefabrication and industrialisation are almost always implicit in many historical and contemporary examples. Energy efficiency (nZEB or even NZEB) is not normally linked to lightweight modular construction and/or industrialised lightweight; rather, it is united to the idea of massive closureswith high thermal inertia typical of design standards such as the Passive House; and although other concepts that subtract value from it are generally associated with lightweight building (short useful life, limited forms and function, inappropriate toany aesthetic pattern; limitation in comfort levels, etc.), the advances being achieved in technology for benefitting from energy and renewable systems of generation may well reverse these ideas and unify the criteria of efficiency + lightweight modular construction. Academic prototypes and projects - such as the Solar Decathlon competition organised by the US Department of Energy and celebrated since 2002, with its corresponding European events such as those held in 2010 and 2012, place a different slant on the idea of industrialised, modular and lightweight building within the context of energy efficiency, with prototypes of homes measuring approximately 60m2, proposed by university competitors, whose aim is to reach and/or develop the NZEB concept, or the zero energy building. This building option does not only signify durability, security and aesthetics, but also fast manufacture and assembly. It also has high energy benefits, as has been demonstrated in successive events of the Solar Decathlon. This type of initiative for the development of building technologies, does not only aim at energy efficiency, but also at the global concept of net energy, Energy Plus and zero CO2 emissions. The level of emissions in the manufacture and introduction of building materials in many cases depends not only on the inherent nature of the material, but also on the quantity of resources used to produce a specific unit of measurement (kg, m3, m2, ml, etc.). Thus in many cases itcould be validly arguedthat with less weight and smaller size, there will be fewer global emissions of greenhouse effect gases and less contamination. For the research carried out in this thesis prototypes such as the CML (3D Module) and CIL (panelled and elements) have been used as valid study references, becauseboth systems are comparablefor the purpose of analysing the energy benefits of closure materials. So as to reach a basic conclusion in this doctoral thesis - that sets out to demonstrate the technological/industrial viability of the combination of energy efficiency and lightweight modular construction - the departure point is the study of the state of the technique (from the selection of materials and the possible processes of industrialisation in manufacture, to their use on site, functioning and use, respecting the concepts of zero consumption, zero emissions of carbon and Energy Plus). Moreover, with the state of the technique identifying the current situation, tests and practices have been carried out with a natural scale prototype and test cells so as to verify the behaviour of the composite elements of these in certain climatic conditions. These types of result are contrasted with those obtained through computer simulation based on the same parameters and done, principally, using simplified methods of calculation, validated by institutions competent in energy efficiency in Spanish building and in line with the rules in force.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Energy auditing can be an important contribution for identification and assessment of energy conservation measures (ECMs) in buildings. Numerous tools and software have been developed, with varying degree of precision and complexity and different areas of use.   This paper evaluates PHPP as a versatile, easy-to-use energy auditing tool and gives examples of how it has been compared to a dynamic simulation tool, within the EU-project iNSPiRe. PHPP is a monthly balance energy calculation tool based on EN13790. It is intended for assisting the design of Passive Houses and energy renovation projects and as guidance in the choice of appropriate ECMs.   PHPP was compared against the transient simulation software TRNSYS for a single family house and a multi-family house. It should be mentioned that dynamic building simulations might strongly depend on the model assumptions and simplifications compared to reality, such as ideal heating or real heat emission system. Setting common boundary conditions for both PHPP and TRNSYS, the ideal heating and cooling loads and demands were compared on monthly and annual basis for seven European locations and buildings with different floor area, S/V ratio, U-values and glazed area of the external walls.   The results show that PHPP can be used to assess the heating demand of single-zone buildings and the reduction of heating demand with ECMs with good precision. The estimation of cooling demand is also acceptable if an appropriate shading factor is applied in PHPP. In general, PHPP intentionally overestimates heating and cooling loads, to be on the safe side for system sizing. Overall, the agreement with TRNSYS is better in cases with higher quality of the envelope as in cold climates and for good energy standards. As an energy auditing tool intended for pre-design it is a good, versatile and easy-to-use alternative to more complex simulation tools.