4 resultados para Parvalbumine


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Les mutations du gène CACNA1A, encodant la sous-unité α du canal calcique voltage-dépendant CaV2.1, causent l’ataxie épisodique de type 2 (EA2) chez l’humain. Nous avons investigué une cohorte de 16 patients de quatre familles canadiennes-françaises porteurs de mutations induisant une perte de fonction du gène CACNA1A. Outre une ataxie épisodique et un risque élevé d’épilepsie, la majorité de ces patients présentait des symptômes neurocognitifs incluant de l’inattention, des troubles d’apprentissage et une rigidité cognitive. Nous avons récemment démontré qu’une délétion sélective de Cacna1a dans les interneurones (INs) GABAergiques corticaux induit une dysfonction synaptique des IN exprimant la parvalbumine (PV) et suffit à induire une épilepsie généralisée. Cependant, les mécanismes sous-tendant l’atteinte cognitive associée aux délétions du gène CACNA1A sont inconnus. Nous postulons que la perte sélective d’inhibition périsomatique corticale résultant de la dysfonction synaptique des IN PV contribue aux déficits cognitifs associés aux délétions de Cacna1a. Afin d’investiguer cette hypothèse, nous avons généré une lignée de souris mutantes portant une délétion hétérozygote conditionnelle de Cacna1a restreinte aux populations neuronales exprimant la PV (PVcre; Cacna1ac/+). En couplant optogénétique et électrophysiologie, nous avons démontré que cette mutation affecte significativement l’inhibition des cellules pyramidales du cortex orbitofrontal par les IN PV. Nous avons de plus démontré que les mutants PVcre; Cacna1ac/+ présentent des troubles d’impulsivité et de rigidité cognitive dans différents paradigmes comportementaux. En conclusion, nos travaux suggèrent qu’une haploinsuffisance de Cacna1a engendre des déficits cognitifs et comportementaux en partie imputables à une dysfonction de l’inhibition périsomatique au niveau des circuits orbitofrontaux.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La période postnatale et l’expérience sensorielle sont critiques pour le développement du système visuel. Les interneurones inhibiteurs exprimant l’acide γ-aminobutyrique (GABA) jouent un rôle important dans le contrôle de l’activité neuronale, le raffinement et le traitement de l’information sensorielle qui parvient au cortex cérébral. Durant le développement, lorsque le cortex cérébral est très susceptible aux influences extrinsèques, le GABA agit dans la formation des périodes critiques de sensibilité ainsi que dans la plasticité dépendante de l’expérience. Ainsi, ce système inhibiteur servirait à ajuster le fonctionnement des aires sensorielles primaires selon les conditions spécifiques d’activité en provenance du milieu, des afférences corticales (thalamiques et autres) et de l’expérience sensorielle. Certaines études montrent que des différences dans la densité et la distribution de ces neurones inhibiteurs corticaux reflètent les caractéristiques fonctionnelles distinctes entre les différentes aires corticales. La Parvalbumine (PV), la Calretinine (CR) et la Calbindine (CB) sont des protéines chélatrices du calcium (calcium binding proteins ou CaBPs) localisées dans différentes sous-populations d’interneurones GABAergiques corticaux. Ces protéines tamponnent le calcium intracellulaire de sorte qu’elles peuvent moduler différemment plusieurs fonctions neuronales, notamment l’aspect temporel des potentiels d’action, la transmission synaptique et la potentialisation à long terme. Plusieurs études récentes montrent que les interneurones immunoréactifs (ir) aux CaBPs sont également très sensibles à l’expérience et à l’activité sensorielle durant le développement et chez l’adulte. Ainsi, ces neurones pourraient avoir un rôle crucial à jouer dans le phénomène de compensation ou de plasticité intermodale entre les cortex sensoriels primaires. Chez le hamster (Mesocricetus auratus), l’énucléation à la naissance fait en sorte que le cortex visuel primaire peut être recruté par les autres modalités sensorielles, telles que le toucher et l’audition. Suite à cette privation oculaire, il y a établissement de projections ectopiques permanentes entre les collicules inférieurs (CI) et le corps genouillé latéral (CGL). Ceci a pour effet d’acheminer l’information auditive vers le cortex visuel primaire (V1) durant le développement postnatal. À l’aide de ce modèle, l’objectif général de ce projet de thèse est d’étudier l’influence et le rôle de l’activité sensorielle sur la distribution et l’organisation des interneurones corticaux immunoréactifs aux CaBPs dans les aires sensorielles visuelle et auditive primaires du hamster adulte. Les changements dans l’expression des CaBPs ont été déterminés d’une manière quantitative en évaluant les profils de distribution laminaire de ces neurones révélés par immunohistochimie. Dans une première expérience, nous avons étudié la distribution laminaire des CaBPs dans les aires visuelle (V1) et auditive (A1) primaires chez le hamster normal adulte. Les neurones immunoréactifs à la PV et la CB, mais non à la CR, sont distribués différemment dans ces deux cortex primaires dédiés à une modalité sensorielle différente. Dans une deuxième étude, une comparaison a été effectuée entre des animaux contrôles et des hamsters énucléés à la naissance. Cette étude montre que le cortex visuel primaire de ces animaux adopte une chimioarchitecture en PV similaire à celle du cortex auditif. Nos recherches montrent donc qu’une suppression de l’activité visuelle à la naissance peut influencer l’expression des CaBPs dans l’aire V1 du hamster adulte. Ceci suggère également que le type d’activité des afférences en provenance d’autres modalités sensorielles peut moduler, en partie, une circuiterie corticale en CaBPs qui lui est propre dans le cortex hôte ou recruté. Ainsi, nos travaux appuient l’hypothèse selon laquelle il serait possible que certaines de ces sous-populations d’interneurones GABAergiques jouent un rôle crucial dans le phénomène de la plasticité intermodale.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Les modèles kainate et pentylènetétrazole représentent deux modèles d’épilepsie du lobe temporal dont les conséquences à long terme sont différentes. Le premier est un modèle classique d’épileptogénèse avec crises récurrentes spontanées tandis que le second se limite aux crises aigües. Nous avons d’abord caractérisé les différents changements survenant dans les circuits excitateurs et inhibiteurs de l’hippocampe adulte de rats ayant subi des crises à l’âge immature. Ensuite, ayant observé dans le modèle fébrile une différence du pronostic lié au genre, nous avons voulu savoir si cette différence était aussi présente dans des modèles utilisant des neurotoxines. L’étude électrophysiologique a démontré que les rats KA et PTZ, mâles comme femelles, présentaient une hyperactivité des récepteurs NMDA au niveau des cellules pyramidales du CA1, CA3 et DG. Les modifications anatomiques sous-tendant cette hyperexcitabilité ont été étudiées et les résultats ont montré une perte sélective des interneurones GABAergiques contenant la parvalbumine dans les couches O/A du CA1 des mâles KA et PTZ. Chez les femelles, seul le DG était légèrement affecté pour les PTZ tandis que les KA présentaient, en plus du DG, des pertes importantes au niveau de la couche O/A. Les évaluations cognitives ont démontré que seuls les rats PTZ accusaient un déficit spatial puisque les rats KA présentaient un apprentissage comparable aux rats normaux. Cependant, encore une fois, cette différence n’était présente que chez les mâles. Ainsi, nos résultats confirment qu’il y a des différences liées au genre dans les conséquences des convulsions lorsqu’elles surviennent chez l’animal immature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

L’encéphalopathie hypoxique-­‐ischémique cause des milliers de victimes à travers le monde chaque année. Les enfants survivants à un épisode hypoxique-­‐ischémique sont à risque de développer des problèmes neurologiques incapacitants comme une paralysie cérébrale, un retard mental, une épilepsie ou des troubles d’ordre comportemental. Les modèles animaux ont amélioré nos connaissances sur les mécanismes sous-­‐jacents aux dommages cérébraux, mais elles sont encore trop incomplètes pour être capables de prévenir les problèmes neurologiques. Ce projet vise à comprendre l’impact d’un épisode asphyxique périnatale associé à des convulsions ainsi que l’activation de l’adenosine monophosphate-­‐activated protein kinase (AMPK) sur les circuits GABAergiques inhibiteurs en développement chez la souris. Dans le but d’investiguer le sort des neurones inhibiteurs, appelés interneurones, suite à un épisode asphyxique périnatal associé à des convulsions avec des animaux transgéniques, nous avons pris avantage d’un nouveau modèle d’hypoxie permettant d’induire des convulsions chez la souris. Deux populations d’interneurones représentant ensemble environ 60% de tous les interneurones corticaux ont été étudiées, soit les cellules exprimant la parvalbumine (PV) et les cellules exprimant la somatostatine (SOM). L’étude stéréologique n’a montré aucune mort neuronale de ces deux populations d’interneurones dans l’hippocampe chez les souris hypoxique d’âge adulte. Par contre, le cortex des souris hypoxiques présentait des zones complètement ou fortement dépourvues de cellules PV alors que les cellules SOM n’étaient pas affectées. L’utilisation d’une lignée de souris transgénique exprimant une protéine verte fluorescente (GFP) dans les cellules PV nous a permis de comprendre que les trous PV sont le reflet de deux choses : 1) une diminution des cellules PV et 2) une immaturité des cellules PV restantes. Puisque les cellules PV sont spécifiquement affectées dans la première partie de notre étude, nous avons voulu étudier les mécanismes moléculaires sous-­‐jacents à cette vulnérabilité. L’AMPK est un senseur d’énergie qui orchestre le rétablissement des i niveaux d’énergie cellulaire dans le cas d’une déplétion énergétique en modulant des voies de signalisation impliquant la synthèse de protéines et l’excitabilité membranaire. Il est possible que l’activation d’AMPK suite à un épisode asphyxique périnatal associé à des convulsions soit néfaste à long-­‐terme pour le circuit GABAergique en développement et modifie l’établissement de l’innervation périsomatique d’une cellule PV sur les cellules pyramidales. Nous avons étudié cette hypothèse dans un modèle de culture organotypique en surexprimant la forme wild-­‐type (WT) de la sous-­‐unité α2 d’AMPK, ainsi qu’une forme mutée dominante négative (DN), dans des cellules PV individuelles. Nous avons montré que pendant la phase de formation synaptique (jours post-­‐natals équivalents EP 10-­‐18), la surexpression de la forme WT désorganise la stabilisation des synapses. De plus, l’abolition de l’activité d’AMPK semble augmenter le nombre de synapses périsomatiques faits par la cellule PV sur les cellules pyramidales pendant la phase de formation et semble avoir l’effet inverse pendant la phase de maturation (EP 16-­‐24). La neurotransmission GABAergique joue plusieurs rôles dans le cerveau, depuis la naissance jusqu’à l’âge adulte des interneurones, et une dysfonction des interneurones a été associée à plusieurs troubles neurologiques, comme la schizophrénie, l’autisme et l’épilepsie. La maturation des circuits GABAergiques se fait majoritairement pendant la période post-­‐natale et est hautement dépendante de l’activité neuronale et de l’expérience sensorielle. Nos résultats révèlent que le lourd fardeau en demande énergétique d’un épisode asphyxique périnatal peut causer une mort neuronale sélective des cellules PV et compromettre l’intégrité de leur maturation. Un des mécanismes sous-­‐ jacents possible à cette immaturité des cellules PV suite à l’épisode hypoxique est l’activation d’AMPK, en désorganisant leur profil d’innervation sur les cellules pyramidales. Nous pensons que ces changements dans le réseau GABAergique pourrait contribuer aux problèmes neurologiques associés à une insulte hypoxique.