995 resultados para Pair 2


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study demonstrates the utility of ternary ion-pair complex formed among BINOL (1,1'-Bi-2-naphthol), a carboxylic acid and an organic base, such as, dimethylpyridine (DMAP), 1,4-diazabicyclo2.2.2]octane (DABCO), as a versatile chiral solvating agent (CSA) for the enantiodiscrimination of carboxylic acids, measurement of enantiomeric excess (ee) and the assignment of absolute configuration of hydroxy acids. The proposed mechanism of ternary complex has wider application for testing the enantiopurity owing to the fact that the binary mixture using BINOL alone does not serve as a solvating agent for their discrimination. In addition, the developed protocol has an excellent utility for the assignment of the absolute configurations of hydroxy acids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

FT-IR (4000-400 cm(-1)) and FT-Raman (4000-200 cm(-1)) spectral measurements on solid 2,6-dichlorobenzonitrile (2,6-DCBN) have been done. The molecular geometry, harmonic vibrational frequencies and bonding features in the ground state have been calculated by density functional theory at the B3LYP/6-311++G (d,p) level. A comparison between the calculated and the experimental results covering the molecular structure has been made. The assignments of the fundamental vibrational modes have been done on the basis of the potential energy distribution (PED). To investigate the influence of intermolecular hydrogen bonding on the geometry, the charge distribution and the vibrational spectrum of 2,6-DCBN; calculations have been done for the monomer as well as the tetramer. The intermolecular interaction energies corrected for basis set superposition error (BSSE) have been calculated using counterpoise method. Based on these results, the correlations between the vibrational modes and the structure of the tetramer have been discussed. Molecular electrostatic potential (MEP) contour map has been plotted in order to predict how different geometries could interact. The Natural Bond Orbital (NBO) analysis has been done for the chemical interpretation of hyperconjugative interactions and electron density transfer between occupied (bonding or lone pair) orbitals to unoccupied (antibonding or Rydberg) orbitals. UV spectrum was measured in methanol solution. The energies and oscillator strengths were calculated by Time Dependent Density Functional Theory (TD-DFT) and matched to the experimental findings. TD-DFT method has also been used for theoretically studying the hydrogen bonding dynamics by monitoring the spectral shifts of some characteristic vibrational modes involved in the formation of hydrogen bonds in the ground and the first excited state. The C-13 nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by the Gauge independent atomic orbital (GIAO) method and compared with experimental results. Standard thermodynamic functions have been obtained and changes in thermodynamic properties on going from monomer to tetramer have been presented. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the titled tricyclic orthocarbonate derivative, the three endocyclic C-O bonds are longer than the exo-cyclic C-O bond (similar to 4.40 angstrom vs. similar to 1.37 angstrom). This indicates an anomeric-type interaction between the two electron lone pairs on the exocyclic oxygen atom and the antibonding orbitals of the two antiperiplanar endocyclic C-O bonds. The remaining endocyclic C-O bond - marginally shorter than the other two apparently adds to this effect. Intriguingly, the antibonding orbital of the exocyclic C-O bond extends into the interior of the adamantyl cage, and is stereoelectronically prevented from overlapping with any of the six adjacent lone pairs. The results also seem to indicate a preference for interaction between a single donor oxygen atom and multiple acceptor antibonding orbitals rather than vice versa. The results add insightfully to the substantial body of evidence favouring the antiperiplanar lone pair hypothesis (ALPH). (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flame particles are mathematical points comoving with a reacting isoscalar surface in a premixed flame. In this Rapid Communication, we investigate mean square pair separation of flame particles as a function of time from their positions tracked in two sets of direct numerical simulation solutions of H-2-air turbulent premixed flames with detailed chemistry. We find that, despite flame particles and fluid particles being very different concepts, a modified Batchelor's scaling of the form 2)> = C-F ( (F)(0) Delta(F)(0))(2/3)t(2) holds for flame particle pair dispersion. The proportionality constant, however, is not universal and depends on the isosurface temperature value on which the flame particles reside. Following this, we attempt to analytically investigate the rationale behind such an observation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present the results of combined experimental and theoretical (molecular dynamics simulations and integral equation theory) studies of the structure and effective interactions of suspensions of polymer grafted nanoparticles (PGNPs) in the presence of linear polymers. Due to the absence of systematic experimental and theoretical studies of PGNPs, it is widely believed that the structure and effective interactions in such binary mixtures would be very similar to those of an analogous soft colloidal material-star polymers. In our study, polystyrene-grafted gold nanoparticles with functionality f = 70 were mixed with linear polystyrene (PS) of two different molecular weights for obtaining two PGNP: PS size ratios, xi = 0.14 and 2.76 (where, xi = M-g/M-m, M-g and M-m being the molecular weights of grafting and matrix polymers, respectively). The experimental structure factor of PGNPs could be modeled with an effective potential (Model-X), which has been found to be widely applicable for star polymers. Similarly, the structure factor of the blends with xi = 0.14 could be modeled reasonably well, while the structure of blends with xi = 2.76 could not be captured, especially for high density of added polymers. A model (Model-Y) for effective interactions between PGNPs in a melt of matrix polymers also failed to provide good agreement with the experimental data for samples with xi = 2.76 and high density of added polymers. We tentatively attribute this anomaly in modeling the structure factor of blends with xi = 2.76 to the questionable assumption of Model-X in describing the added polymers as star polymers with functionality 2, which gets manifested in both polymer-polymer and polymer-PGNP interactions especially at higher fractions of added polymers. The failure of Model-Y may be due to the neglect of possible many-body interactions among PGNPs mediated by matrix polymers when the fraction of added polymers is high. These observations point to the need for a new framework to understand not only the structural behavior of PGNPs but also possibly their dynamics and thermo-mechanical properties as well. (C) 2015 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Part I

Numerical solutions to the S-limit equations for the helium ground state and excited triplet state and the hydride ion ground state are obtained with the second and fourth difference approximations. The results for the ground states are superior to previously reported values. The coupled equations resulting from the partial wave expansion of the exact helium atom wavefunction were solved giving accurate S-, P-, D-, F-, and G-limits. The G-limit is -2.90351 a.u. compared to the exact value of the energy of -2.90372 a.u.

Part II

The pair functions which determine the exact first-order wavefunction for the ground state of the three-electron atom are found with the matrix finite difference method. The second- and third-order energies for the (1s1s)1S, (1s2s)3S, and (1s2s)1S states of the two-electron atom are presented along with contour and perspective plots of the pair functions. The total energy for the three-electron atom with a nuclear charge Z is found to be E(Z) = -1.125•Z2 +1.022805•Z-0.408138-0.025515•(1/Z)+O(1/Z2)a.u.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stars with a core mass greater than about 30 M become dynamically unstable due to electron-positron pair production when their central temperature reaches 1.5-2.0 x 109 0K. The collapse and subsequent explosion of stars with core masses of 45, 52, and 60 M is calculated. The range of the final velocity of expansion (3,400 – 8,500 km/sec) and of the mass ejected (1 – 40 M) is comparable to that observed for type II supernovae.

An implicit scheme of hydrodynamic difference equations (stable for large time steps) used for the calculation of the evolution is described.

For fast evolution the turbulence caused by convective instability does not produce the zero entropy gradient and perfect mixing found for slower evolution. A dynamical model of the convection is derived from the equations of motion and then incorporated into the difference equations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel pair of the E- and Z-isomeric 1R,4R-2-(4-heptyloxyphenyl)-benzylidene-p-menthan-3-ones has been prepared and the influence of distinctions in their molecular geometry on macroscopic properties of liquid crystal systems with the induced supra-molecular helical structure has been studied. The significantly lower helical twisting power of the chiral Z-isomer in comparison with that of E- one has been confirmed in the case of induced cholesteric systems based on 4-pentyl-4-cyanobiphenyl. The phase behavior and ferroelectric characteristics have been investigated for smectic-C* compositions based on the eutectic mixture of the homological 4-hexyloxyphenyl-4'-hexyloxy- and 4-hexyloxyphenyl-4'-octyloxybenzoates containing the novel isomeric chiral dopants. The spontaneous polarisation of the opposite signs induced by the isomeric chiral components has been revealed for the compositions studied. Distinctions in phase states, absolute values of the spontaneous polarization, smectic tilt angle and rotation viscosity of the systems obtained are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent experimental data have revealed large mirror energy differences (MED) between high-spin states in the mirror nuclei Se-67 and As-67, the heaviest pair where MED have been determined so far. The MED are generally attributed to the isospin symmetry breaking caused by the Coulomb force and by the isospin-nonconserving part of the nucleon-nucleon residual interaction. The different contributions of the various terms have been extensively studied in the fp shell. By employing large-scale shell-model calculations, we show that the inclusion of the g(9/2) orbit causes interference between the electromagnetic spin-orbit and the Coulomb monopole radial terms at high spin. The large MED are attributed to the aligned proton pair excitations from the p(3/2) and f(5/2) orbits to the g(9/2) orbit. The relation of the MED to deformation is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With an effective Lagrangian approach, we analyze several NN -> NN pi pi channels by including various resonances with mass up to 1.72 GeV. For the channels with the pion pair of isospin zero, we confirm the dominance of N*(1440) -> N sigma in the near-threshold region. At higher energies and for channels with the final pion pair of isospin one, we find large contributions from N*(1440) -> Delta pi, double-Delta, Delta(1600) -> N*(1440)pi, Delta(1600) -> Delta pi and Delta(1620) -> Delta pi. There are also sizable contributions from Delta -> Delta pi, Delta -> N pi, N -> Delta pi, and nucleon pole at energies close to the threshold. We give a good reproduction to the total cross sections up to beam energies of 2.2 GeV except for the pp -> pp pi(0)pi(0) channel at energies around 1.1 GeV and our results agree with the existing data of differential cross sections of pp -> pp pi(+)p pi(-), pp -> nn pi(+)pi(+), and pp -> pp pi(0)pi(0) which are measured at CELSIUS and COSY.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The behaviors of double proton transfer (DPT) occurring in a representative glycinamide-formamidine complex have been investigated employing the B3LYP/6-311++G** level of theory. Computational results suggest that the participation of a formamidine molecule favors the proceeding of the proton transfer (PT) for glycinamide compared with that without mediator-assisted case. The DPT process proceeds with a concerted mechanism rather than a stepwise one since no zwitterionic complexes have been located during the DPT process. The barrier heights are 14.4 and 3.9 kcal/mol for the forward and reverse directions, respectively. However, both of them have been reduced by 3.1 and 2.9 kcal/mol to 11.3 and 1.0 kcal/mol with further inclusion of zero-point vibrational energy (ZPVE) corrections, where the lower reverse barrier height implies that the reverse reaction should proceed easily at any temperature of biological importance. Additionally, the one-electron oxidation process for the double H-bonded glycinamide-formamidine complex has also been investigated. The oxidated product is characterized by a distonic radical cation due to the fact that one-electron oxidation takes place on glycinamide fragment and a proton has been transferred from glycinamide to formamidine fragment spontaneously. As a result, the vertical and adiabatic ionization potentials for the neutral double H-bonded complex have been determined to be about 8.46 and 7.73 eV, respectively, where both of them have been reduced by about 0.79 and 0.87 eV relative to those of isolated glycinamide due to the formation of the intermolecular H-bond with formamidine. Finally, the differences between model system and adenine-thymine base pair have been discussed briefly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[Ru(bpy)2dppz]2+ electrochemiluminescence (ECL) was studied, and it was used to investigate DNA interaction and develop a label-free ATP aptasensor for the first time. ECL of [Ru(bpy)2dppz]2+ is negligible in aqueous solution, and increases approximately 1000 times when [Ru(bpy)2dppz]2+ intercalates into the nucleic acid structure. The ECL switch behavior of [Ru(bpy)2dppz]2+ is ascribed to the intercalation that shields the phenazine nitrogens from the solvent and results in a luminescent excited state. The ECL switch by DNA was applied to investigate the interaction of [Ru(bpy)2dppz]2+ with herring sperm DNA. The calculated equilibrium constant (K) is 1.35 x 10(6) M(-1), and the calculated binding-site size (s) is 0.88 base pair, which is consistent with the reported values.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A polymer pair composed of poly( N-isopropylacrylamide-co-2-hydroxyethyl methacrylate terminated oligo( L-lactide)) ( poly( NIPAAm-co-HEMAOLLA)) graft random copolymer and poly( D-lactide) ( PDLA) homopolymer was self-assembled into micelles with a diameter around 100 nm through the stereocomplexation between the OLLA branches of the graft copolymer and the PDLA homopolymer. The specific intermolecular stereocomplexation was considered as the powerful ordered aggregation force in the micelle cores. The shell's component of poly( NIPAAm-co-HEMA) and its thermosensitivity were proved by H-1 nuclear magnetic resonance ( NMR) and dynamic light scattering ( DLS), respectively. The incorporation of PDLA homopolymer into the graft copolymer affected the micelle size and the critical micelle concentration ( CMC). The incorporation of even a small quantity ( 11 wt%) of PDLA into the graft copolymer micelles resulted in a great decrease of the micelle size. For the graft copolymer with low per cent grafting of 18%, the size of the corresponding micelles decreased slightly even if the PDLA content increased up to 33 wt%. For the graft copolymer with high per cent grafting of 58%, with the further increase of PDLA content, the size of the corresponding micelles at first decreased further and then began to increase. The molecular weight of the PDLA did not significantly affect the micelle size.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The title bimetallic compound, [Yb-4(mu(3)-OH)(4)(C6H13NO2)(7)-(H2O)(7)][ZnCl4][ZnCl3(OH)]Cl-4.8H(2)O, was synthesized at near physiological pH (6.0). The compound exhibits some novel structural features, including an asymmetric [Yb-4(mu(3)-OH)(4)(L-leucine)(7)(H2O)(7)](8+) complex cation in which four OH groups act as bridging ligands, linking four Yb3+ cations into a Yb4O4 structural unit. Each pair of adjacent Yb3+ ions is further bridged by one carboxy group from a leucine ligand. Water molecules and a monodentate leucine ligand also coordinate to Yb3+ ions, completing their eight-coordinate square-antiprismatic coordination. The Yb-4(mu(3)-OH)(4)(L-leucine)(7)(H2O)(7)](8+) cation, the [ZnCl4](2-), [ZnCl3OH](2-) and Cl- anions, and the lattice water molecules are linked via hydrogen bonds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrochemical behavior of the title compound (denoted Nd(SiMo7W4)(2)(13-)) in aqueous solution has been studied using cyclic voltammetry, sampled d.c. voltammetry, differential pulse voltammetry and bulk electrolysis with coulometry, The stable pH range of Nd(SiMo7W4)(2)(13-) is determined with UV-visible spectra. In the potential range between 0.70 and -0.45 V vs. SCE, the anion in pH 3.8 aqueous solution undergoes one-, one-, two- and two-electron steps of four redox processes attributed to electron addition and removal from the molybdate-oxo framework. The adsorption of the anion on the dropping mercury electrode and a self-inhibition influence of the adsorbed anions on the redox process of those anions dissolved in solution are found. The unusual dependence of the formal potentials on pH is explained with the competition of the protonation and ion-pair formation due to the high negative charge of Nd(SiMo7W4)(2)(13-) and its reduced forms. The electrocatalytic effects of the anion on the bromate are investigated.