167 resultados para PTEN


Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Present study provides clinical evidence of existence of a functional loop involving miR-21 and let-7a as potential regulators of aberrant STAT3 signaling recently reported by our group in an experimental setup (Shishodia et al. BMC Cancer 2014, 14:996). The study is now extended to a set of cervical tissues that represent natural history of human papillomavirus (HPV)-induced tumorigenic transformation. MATERIALS AND METHODS: Cervical tissues from histopathologically-confirmed pre-cancer (23) and cancer lesions (56) along with the normal control tissues (23) were examined for their HPV infection status, expression level of miR-21 & let-7a and STAT3 & pSTAT3 (Y705) by PCR-based genotyping, quantitative real-time PCR and immunoblotting. RESULTS: Analysis of cancer tissues revealed an elevated miR-21 and reduced let-7a expression that correspond to the level of STAT3 signaling. While miR-21 showed direct association, let-7a expression was inversely related to STAT3 expression and its activation. In contrast, a similar reciprocal expression kinetics was absent in LSIL and HSIL tissues which overexpressed let-7a. miR-21 was found differentially overexpressed in HPV16-positive lesions with a higher oncoprotein E6 level. Overexpression of miR-21 was accompanied by elevated level of other STAT3-regulated gene products MMP-2 and MMP-9. Enhanced miR-21 was found associated with decreased level of STAT3 negative regulator PTEN and negative regulator of MMPs, TIMP-3. CONCLUSION: Overall, our study suggests that the microRNAs, miR-21 and let-7a function as clinically relevant integral components of STAT3 signaling and are responsible for maintaining activated state of STAT3 in HPV-infected cells during cervical carcinogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glycogen Synthase Kinase 3 (GSK3), a serine/threonine kinase initially characterized in the context of glycogen metabolism, has been repeatedly realized as a multitasking protein that can regulate numerous cellular events in both metazoa and protozoa. I recently found GSK3 plays a role in regulating chemotaxis, a guided cell movement in response to an external chemical gradient, in one of the best studied model systems for chemotaxis - Dictyostelium discoideum. It was initially found that comparing to wild type cells, gsk3- cells showed aberrant chemotaxis with a significant decrease in both speed and chemotactic indices. In Dictyostelium, phosphatidylinositol 3,4,5-triphosphate (PIP3) signaling is one of the best characterized pathways that regulate chemotaxis. Molecular analysis uncovered that gsk3- cells suffer from high basal level of PIP3, the product of PI3K. Upon chemoattractant cAMP stimulation, wild type cells displayed a transient increase in the level of PIP3. In contrast, gsk3- cells exhibited neither significant increase nor adaptation. On the other hand, no aberrant dynamic of phosphatase and tensin homolog (PTEN), which antagonizes PI3K function, was observed. Upon membrane localization of PI3K, PI3K become activated by Ras, which will in turn further facilitate membrane localization of PI3K in an F-Actin dependent manner. The gsk3- cells treated with F-Actin inhibitor Latrunculin-A showed no significant difference in the PIP3 level. I also showed GSK3 affected the phosphorylation level of the localization domain of PI3K1 (PI3K1-LD). PI3K1-LD proteins from gsk3- cells displayed less phosphorylation on serine residues compared to that from wild type cells. When the potential GSK3 phosphorylation sites of PI3K1-LD were substituted with aspartic acids (Phosphomimetic substitution), its membrane localization was suppressed in gsk3- cells. When these serine residues of PI3K1-LD were substituted with alanine, aberrantly high level of membrane localization of the PI3K1-LD was monitored in wild type cells. Wild type, phosphomimetic, and alanine substitution of PI3K1-LD fused with GFP proteins also displayed identical localization behavior as suggested by the cell fraction studies. Lastly, I identified that all three potential GSK3 phosphorylation sites on PI3K1-LD could be phosphorylated in vitro by GSK3.