198 resultados para PSORIASIS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The phosphodiesterase 4 (PDE4) family are cAMP specific phosphodiesterases that play an important role in the inflammatory response and is the major PDE type found in inflammatory cells. A significant number of PDE4 specific inhibitors have been developed and are currently being investigated for use as therapeutic agents. Apremilast, a small molecule inhibitor of PDE 4 is in development for chronic inflammatory disorders and has shown promise for the treatment of psoriasis, psoriatic arthritis as well as other inflammatory diseases. It has been found to be safe and well tolerated in humans and in March 2014 it was approved by the US food and drug administration for the treatment of adult patients with active psoriatic arthritis. The only other PDE4 inhibitor on the market is Roflumilast and it is used for treatment of respiratory disease. Roflumilast is approved in the EU for the treatment of COPD and was recently approved in the US for treatment to reduce the risk of COPD exacerbations. Roflumilast is also a selective PDE4 inhibitor, administered as an oral tablet once daily, and is thought to act by increasing cAMP within lung cells. As both (Apremilast and Roflumilast) compounds selectively inhibit PDE4 but are targeted at different diseases, there is a need for a clear understanding of their mechanism of action (MOA). Differences and similarity of MOA should be defined for the purposes of labelling, for communication to the scientific community, physicians, and patients, and for an extension of utility to other diseases and therapeutic areas. In order to obtain a complete comparative picture of the MOA of both inhibitors, additional molecular and cellular biology studies are required to more fully elucidate the signalling mediators downstream of PDE4 inhibition which result in alterations in pro- and anti-inflammatory gene expression. My studies were conducted to directly compare Apremilast with Roflumilast, in order to substantiate the differences observed in the molecular and cellular effects of these compounds, and to search for other possible differentiating effects. Therefore the main aim of this thesis was to utilise cutting-edge biochemical techniques to discover whether Apremilast and Roflumilast work with different modes of action. In the first part of my thesis I used novel genetically encoded FRET based cAMP sensors targeted to different intracellular compartments, in order to monitor cAMP levels within specific microdomains of cells as a consequence of challenge with Apremilast and Roflumilast, which revealed that Apremilast and Roflumilast do regulate different pools of cAMP in cells. In the second part of my thesis I focussed on assessing whether Apremilast and Roflumilast cause differential effects on the PKA phosphorylation state of proteins in cells. I used various biochemical techniques (Western blotting, Substrate kinase arrays and Reverse Phase Protein array and found that Apremilast and Roflumilast do lead to differential PKA substrate phosphorylation. For example I found that Apremilast increases the phosphorylation of Ribosomal Protein S6 at Ser240/244 and Fyn Y530 in the S6 Ribosomal pathway of Rheumatoid Arthritis Synovial fibroblast and HEK293 cells, whereas Roflumilast does not. This data suggests that Apremilast has distinct biological effects from that of Roflumilast and could represent a new therapeutic role for Apremilast in other diseases. In the final part of my thesis, Phage display technology was employed in order to identify any novel binding motifs that associate with PDE4 and to identify sequences that were differentially regulated by the inhibitors in an attempt to find binding motifs that may exist in previously characterised signalling proteins. Petide array technology was then used to confirm binding of specific peptide sequences or motifs. Results showed that Apremilast and Roflumilast can either enhance or decrease the binding of PDE4A4 to specific peptide sequences or motifs that are found in a variety of proteins in the human proteome, most interestingly Ubiquitin-related proteins. The data from this chapter is preliminary but may be used in the discovery of novel binding partners for PDE4 or to provide a new role for PDE inhibition in disease. Therefore the work in this thesis provides a unique snapshot of the complexity of the cAMP signalling system and is the first to directly compare action of the two approved PDE4 inhibitors in a detailed way.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Writing therapy to improve physical or mental health can take many forms. The most researched model of therapeutic writing (TW) is unfacilitated, individual expressive writing (written emotional disclosure). Facilitated writing activities are less widely researched. Data sources Databases including: MEDLINE, EMBASE, PsychINFO, Linguistics and Language Behavior Abstracts, AMED, and CINHAL were searched from inception to March 2013. Review methods Four TW practitioners provided expert advice. Study procedures were conducted by one reviewer and checked by a second. Randomised controlled trials (RCTs) and non-randomised comparative studies were included. Quality was appraised using the Cochrane risk of bias tool. Unfacilitated and facilitated TW studies were analysed separately under ICD-10 chapter headings. Meta-analyses were performed where possible using Revman 5.2. Costs were estimated from an NHS perspective and three cost-consequence case studies were prepared. Realist synthesis followed RAMESES guidelines. Objectives To review the clinical and cost-effectiveness of TW for people with long-term health conditions (LTCs) compared to no writing, or other controls, reporting any relevant clinical outcomes. To conduct a realist synthesis to understand how TW might work, and for whom. Results From 14,658 unique citations, 284 full text papers were reviewed and 64 studies (58 RCTs) were included in the final effectiveness reviews. Five studies examined facilitated TW, these were extremely heterogeneous with unclear or high risk of bias, but suggested that facilitated TW interventions may be beneficial in individual LTCs. Unfacilitated expressive writing was examined in 59 studies of variable, or unreported, quality. Overall there was very little or no evidence of any benefit reported in the following conditions (number of studies): HIV (six); breast cancer (eight); gynaecological and genitourinary cancers (five); mental health (five); asthma (four); psoriasis (three); chronic pain (four). In inflammatory arthropathies (six) there was a reduction in disease severity (n= 191, standardised mean difference (SMD) - 0.61 [95% confidence intervals (95% CI) -0.96, -0.26]) in the short term on meta-analysis of four studies. For all other LTCs there was either no, or sparse, data with no, or inconsistent, evidence of benefit. Meta-analyses conducted across all the LTCs provided no evidence that unfacilitated EW had any effect on depression at short term (n= 1,563, SMD -0.06, 95% CI -0.29 to 0.17, substantial heterogeneity), or long term (n= 778, SMD-0.04 95% CI -0.18 to 0.10, little heterogeneity) follow up, or on anxiety, physiological or biomarker-based outcomes. One study reported costs, none reported cost-effectiveness, twelve reported resource use; meta-analysis suggested reduced medication use but no impact on health centre visits. Estimated costs of intervention were low, but there was insufficient evidence to judge cost-effectiveness. Realist review findings suggested that facilitated TW is a complex intervention and group interaction contributes to the perception of benefit. It was unclear from the available data who might benefit most from facilitated TW. Limitations Difficulties with developing realist review programme theory meant that mechanisms operating during TW remain obscure. Conclusions Overall there is little evidence to support the effectiveness or cost-effectiveness of unfacilitated expressive writing interventions in people with LTCs. Further research focussed on facilitated TW in people with LTCs could be informative.