1000 resultados para POLYANILINE NANOTUBES


Relevância:

100.00% 100.00%

Publicador:

Resumo:

One-dimensional gold/polyaniline (Au/PANI-CSA) coaxial nanocables with an average diameter of 5060 nm and lengths of more than 1 mu m were successfully synthesized by reacting aniline monomer with chlorauric acid (HAuCl4) through a self-assembly process in the presence Of D-camphor-10-sulfonic acid (CSA), which acts as both a dopant and surfactant. It was found that the formation probability and the size of the Au/PANI-CSA nanocables depends on the molar ratio of aniline to HAuCl4 and the concentration of CSA, respectively. A synergistic growth mechanism was proposed to interpret the formation of the Au/PANI-CSA nanocables. The directly measured conductivity of a single gold/polyaniline nanocable was found to be high (approximate to 77.2S cm(-1)). Hollow PANI-CSA nanotubes, with an average diameter of 50-60 nm, were also obtained successfully by dissolving the Au nanowire core of the Au/PANI-CSA nanocables.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A wet chemical approach is used successfully to produce nanostructured Au material by the reduction of sulfonated polyaniline (SPANI) nanotubes. The Au nanostructures obtained are composed of single crystal Au nanoplates, which are aggregated layer-by-layer into stacks or edge-on-face into clusters at various conditions. The Au nanoplate diameter and thickness can be conveniently controlled in the range of 100 nm to 2 mu m and 10 to 30 nm, respectively, with no accompanying single Au nanoparticles being observed. The formation of the Au nanostructures was controlled by the degradation of SPANI. The gradually and slowly released segments of SPANI served as the reductant during the growth of the 2D Au nanostructures.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Electrospun polyaniline nanofibers are one of the most promising materials for cardiac tissue engineering due to their tunable electroactive properties. Moreover, the biocompatibility of polyaniline nanofibes can be improved by grafting of adhesive peptides during the synthesis. In this paper, we describe the biocompatible properties and cardiomyocytes proliferation on polyaniline electrospun nanofibers modified by hyperbranched poly-L-lysine dendrimers (HPLys). The microstructure characterization of the HPLys/polyaniline nanofibers was carried out by scanning electron microscopy (SEM). It was observed that the application of electrical current stimulates the differentiation of cardiac cells cultured on the nanofiber scaffolds. Both electroactivity and biocompatibility of the HPLys based nanofibers suggest the use this material for culture of cardiac cells and opens the possibility of using this material as a biocompatible electroactive 3-D matrix in cardiac tissue engineering.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The pH-structure correlation of the products of aniline peroxydisulfate reaction was mainly investigated by resonance Raman spectroscopy. The reactions of aniline and ammonium peroxydisulfate were carried out in aqueous solutions of initial pH ranging from 4.9 to 13.2 and monomer/oxidant molar ratio of 4/1. For an initial pH of 4.9, the spectroscopic techniques showed that the emeraldine salt form of polyaniline (PANI-ES) is the main product, corroborating that the usual head-to-tail coupling mechanism is taking place. The resonance Raman spectra at 1064 nm exciting wavelength were useful to detect the emeraldine salt as a minor product for reactions at an initial pH of 5.3-11.5. The Raman spectra of the main product of the reaction at initial pH of 13.2 excited at 1064 and 413.1 nm showed new spectral features consistent with 1,4-Michael-type adducts of aniline monomers and 1,4-benzoquinone-monoimine unit. These compounds and their products of hydrolysis/oxidation are the predominant species for the reaction media of initial pH from 5.3 to 13.2. In order to get PANI with different nanoscale morphologies, a pH value of more than 0 or 1 was used in the aniline polymerization. The spectroscopic data obtained in this work reveal that head-to-tail coupling does not occur when aniline reacts at media pH higher than about 5. It is suggested that chemical structures of the products of aniline oxidation by an unusual mechanism are the driving force for the development of assorted morphologies. Copyright (C) 2011 John Wiley & Sons, Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper investigates the structure of the pro; ducts obtained from the polymerization of aniline with ammonium persulfate in a citrate/phosphate buffer solution at pH 3 by resonance Raman, NMR, FTIR, and UV-vis-NIR spectroscopies. All the spectroscopic data showed that the major product presented segments that were formed by a 1,4-Michael reaction between aniline and p-benzoquinone monoimine, ruling out the formation of polyazane structure that has been recently proposed. The characterization of samples obtained at different stages of the reaction indicated that, as the reaction progressed, phenazine units were formed and 1,4-Michael-type adducts were hydrolyzed/oxidized to yield benzoquinone. Raman mapping data suggested that phenazine-like segments could be related to the formation of the microspheres morphology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Increase in the pH medium of aniline polymerization is used for giving products of different morphologies, which are often wrongly attributed to PANI chains. Infrared and Raman spectroscopic data, supported by quantum chemical calculations, show that aniline-1,4-benzoquinone (AnBzq) is a model system for the characterization of the products of aniline oligomerization in low acidic media. The Raman spectra excited at different laser lines reveal the bichromophoric nature of AnBzq, whose absorption bands at 550 nm and 440 nm can be attributed to pi-pi* transitions of the delocalized benzoquinone and amino-phenyl moieties, respectively. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work, the structural and gas sensing properties of an electropolymerized, polyaniline (PANI)/multiwall carbon nanotube (MWNT) composite based surface acoustic wave (SAW) sensor are reported. Thin films made of PANI nanofibers were deposited onto 36 lithium tantalate (LiTaO3) SAW transducers using electropolymerization and were subsequently dedoped. Scanning electron microscopy (SEM) revealed the compact growth of the composites which is much denser than that of PANI nanofibers. The PANI/MWNT composite based SAW sensor was then exposed to different concentrations of hydrogen (H2) gas at room temperature with a demonstrated electrical response.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Polyaniline (PANI) and PANI/CNT (multiwall carbon nanotubes, CNT) composites were prepared using an oxidative chemical polymerization method with ammonium persulfate and dodecyl benzene sulfonic acid as the oxidizing agent and surfactant, respectively. Fourier-transform infrared spectroscopy spectra illustrate the presence of PANI in the composite and show that some interaction exists between PANI and CNT. Embedding of CNT in the PANI matrix is confirmed by scanning electron micrography. Conductivity of the PANI/CNT composites was higher than that of pure PANI, and the maximum conductivity obtained was 4.44 S/cm at 20 wt.% CNT.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Highly dispersed nanocomposites of polyaniline(PANI) and oxidized single wall carbon nanotubes(SWNTs) have been prepared using dodecylbenzenesulfonic acid as dispersant. The materials were characterized via resonance Raman and electronic absorption spectroscopies. The behavior of the composites as a function of the applied potential was also investigated using in situ Raman electrochemical measurements. The results obtained at E(laser) = 1.17 eV suggest that a charge-transfer process occur between PANI and semiconducting nanotubes for samples where the metallic tubes are previously oxidized. The spectroelectrochemical data show that the presence of SWNTs prevents the oxidation of PANI rings. Copyright (C) 2010 John Wiley & Sons, Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A sensitive electrochemical acetylcholinesterase (AChE) biosensor was successfully developed on polyaniline (PANI) and multi-walled carbon nanotubes (MWCNTs) core-shell modified glassy carbon electrode (GC), and used to detect carbamate pesticides in fruit and vegetables (apple, broccoli and cabbage). The pesticide biosensors were applied in the detection of carbaryl and methomyl pesticides in food samples using chronoamperometry (CA). The GC/MWCNT/PANI/AChE biosensor exhibited detection limits of 1.4 and 0.95 mu mol L-1, respectively, for carbaryl and methomyl. These detection limits were below the allowable concentrations set by Brazilian regulation standards for the samples in which these pesticides were analysed. Reproducibility and repeatability values of 2.6% and 3.2%, respectively, were obtained in the conventional procedure. The proposed biosensor was successfully applied in the determination of carbamate pesticides in cabbage, broccoli and apple samples without any spiking procedure. The obtained results were in full agreement with those from the HPLC procedure. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transmission electron microscopy images of in situ prepared multiwall carbon nanotubes (MWNTs)and polyaniline (PANI) composites show that nanotubes are well dispersed in aqueous medium, and the nanofibers of PANI facilitate intertube transport. Although low temperature transport indicates variable range hopping (VRH) mechanism, the dc and ac conductivity become temperature independent as the MWNT content increases. The onset frequency for the increase in conductivity is observed to be strongly dependent on the MWNT weight percent, and the ac conductivity can be scaled onto a master curve. The negative magnetoresistance is attributed to the forward interference scattering mechanism in VRH transport. (C) 2010 American.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electromagnetic field interactions with the composites made up of polyaniline (PANI) and single wall carbon nanotube (SWCNT) are simulated using the discrete dipole approximation. Recent observations on polymer nano-composites explain the interface interactions between the PANI host and the carbon nanostructures. These types of composite have potential applications in organic solar cell, gas sensor, bio-sensor and electro-chromic devices. Various nanostructures of PANI is possible in the form of nanowires, nanodisks, nanofibers and nanotubes have been reported. In the present study, we considered two types of composite, one is the PANI wrapped CNT and the other is CNT immersed in PANI nanotube. We use Modified Thole's parameters for calculating frequency dependent atomic polarizability of composites. Absorption spectra of the composites are studied by illuminating a wide range of electromagnetic energy spectrum. From the absorption spectra, we observe plasmon excitation in near-infrared region similar to that in SWCNTs reported recently. The interactions between the PANI and CNT in the composite, resulting electromagnetic absorptions are simulated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple and facile procedure to synthesize a novel hybrid nanoelectrocatalyst based on polyaniline (PANI) nanofiber-supported supra-high density Pt nanoparticles (NPs) or Pt/Pd hybrid NPs without prior PANI nanofiber functionalization at room temperature is demonstrated. This represents a new type of ID hybrid nanoelectrocatalyst with several important benefits. First, the procedure is very simple and can be performed at room temperature using commercially available reagents without the need for templates and surfactants. Second, ultra-high density small "bare" Pt NPs or Pt/Pd hybrid NPs are grown directly onto the surface of the PANI nanofiber, without using any additional linker. Most importantly, the present PANI nanofiber-supported supra-high density Pt NPs or Pt/Pd hybrid NPs can be used as a signal enhancement element for constructing electrochemical devices with high performance.