204 resultados para PLGA


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Local anesthetic agents cause temporary blockade of nerve impulses productiong insensitivity to painful stimuli in the area supplied by that nerve. Bupivacaine (BVC) is an amide-type local anesthetic widely used in surgery and obstetrics for sustained peripheral and central nerve blockade. in this study, we prepared and characterized nanosphere formulations containing BVC. To achieve these goals, BVC loaded poly(DL-lactide-co-glycolide) (PLGA) nanospheres (NS) were prepared by nanopreciptation and characterized with regard to size distribution, drug loading and cytotoxicity assays. The 2(3-1) factorial experimental design was used to study the influence of three different independent variables on nanoparticle drug loading. BVC was assayed by HPLC, the particle size and zeta potential were determined by dynamic light scattering. BVC was determined using a combined ultrafiltration-centrifugation technique. The results of optimized formulations showed a narrow size distribution with a polydispersivity of 0.05%, an average diameter of 236.7 +/- 2.6 nm and the zeta potential -2.93 +/- 1,10 mV. In toxicity studies with fibroblast 3T3 cells, BVC loaded-PLGA-NS increased cell viability, in comparison with the effect produced by free BVC. In this way, BVC-loaded PLGA-NS decreased BVC toxicity. The development of BVC formulations in carriers such as nanospheres could offer the possibility of controlling drug delivery in biological systems, prolonging the anesthetic effect and reducing toxicity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes the preparation of poly(DL-lactide-co-glicolide) (PLGA) nanocapsules as a drug carrier system for the local anesthetic bupivacaine. The system was characterized and its stability investigated. The results showed a size distribution with a polydispersity index of 0.12, an average diameter of 148 nm, a zeta potential of -43.5 mV and an entrapment efficiency of 75.8%. The physicochemical properties of polymeric nanocapsule suspensions (average diameter, polydispersity, zeta potential and drug association efficiency) were evaluated as a function of time to determine the formulation stability. The formulation did not display major changes in these properties over the time, and it was considered stable up to 120 days of storage at room temperature. The results reported here which refer to the initial characterization of these new formulations for the local anesthetic bupivacaine show a promising potential for future in vivo studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this work was to investigate the influence of the oily nucleus composition on physico-chemical properties and anesthetic activity of poly (lactide-co-glycolide) nanocapsules with benzocaine.Nanocapsules containing benzocaine were prepared with three different oily nucleus composition and characterized by mean diameter, polydispersivity, zeta potential, pH and stability were investigated as a function of time. In vitro release kinetics were performed in a system with two compartments separated by a cellulose membrane. Intensity and duration of analgesia were evaluated in rats by sciatic nerve blockade.The greatest stability, slower release profile and improvement in the local anesthetic activity of BZC were obtained with the formulation using USP mineral oil as component.Results from our study provide useful perspectives on selection of the primary materials needed to produce suspensions of polymeric nanocapsules able to act as carriers of BZC, with potential future application in the treatment of pain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND and PURPOSEThe PPAR-gamma agonist 15d-PGJ(2) is a potent anti-inflammatory agent but only at high doses. To improve the efficiency of 15d-PGJ(2), we used poly(D,L-lactide-co-glycolide) nanocapsules to encapsulate it, and function as a drug carrier system. The effects of these loaded nanocapsules (15d-PGJ(2)-NC) on inflammation induced by different stimuli were compared with those of free 15d-PGJ(2).EXPERIMENTAL APPROACHMice were pretreated (s.c.) with either 15d-PGJ(2)-NC or unloaded 15d-PGJ(2) (3, 10 or 30 mu g center dot kg-1), before induction of an inflammatory response by i.p. injection of either endotoxin (LPS), carrageenan (Cg) or mBSA (immune response).KEY RESULTSThe 15d-PGJ(2)-NC complex did not display changes in physico-chemical parameters or drug association efficiency over time, and was stable for up to 60 days of storage. Neutrophil migration induced by i.p. administration of LPS, Cg or mBSA was inhibited by 15d-PGJ(2)-NC, but not by unloaded 15d-PGJ(2). In the Cg model, 15d-PGJ(2)-NC markedly inhibited serum levels of the pro-inflammatory cytokines TNF-alpha, IL-1 beta and IL-12p70. Importantly, 15d-PGJ(2)-NC released high amounts of 15d-PGJ(2), reaching a peak between 2 and 8 h after administration. 15d-PGJ(2) was detected in mouse serum after 24 h, indicating sustained release from the carrier. When the same concentration of unloaded 15d-PGJ(2) was administered, only small amounts of 15d-PGJ(2) were found in the serum after a few hours.CONCLUSIONS and IMPLICATIONSThe present findings clearly indicate the potential of the novel anti-inflammatory 15d-PGJ(2) carrier formulation, administered systemically. The formulation enables the use of a much smaller drug dose, and is significantly more effective compared with unloaded 15d-PGJ(2).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To develop docetaxel (DTX)- and alendronate (ALN)-loaded, chitosan (CS)-conjugated polylactide- co-glycolide (PLGA) nanoparticles (NPs) to increase therapeutic efficacy in osteosarcoma cells. Methods: Drug-loaded PLGA NPs were prepared by nanoprecipitation and chemically conjugated by the carboxylic group of PLGA to the amine-bearing CS polymer. The nanocarrier was characterized by dynamic light scattering, transmission electron microscopy, scanning electron microscopy, and differential scanning calorimetry as well as by in vitro drug release and cell culture studies. Results: NP size was within the tumour targeting range (~200 nm) with an effective positive charge (20 mV), thus increasing cellular uptake efficiency. Morphological analysis revealed clear spherical particles with uniform dispersion. The NPs exhibited identical sustained release kinetics for both DTX and ALN. CS-conjugated PLGA with dual-drug-loaded (DTX and AL) NPs showed typical time-dependent cellular uptake and also displayed superior cytotoxicity in MG-63 cells compared with blank NPs, which were safe and biocompatible. Conclusion: Combined loading of DTX and ALN in NPs increased the therapeutic efficacy of the formulation for osteosarcoma treatment, thus indicating the potential benefit of a combinatorial drug regimen using nanocarriers for effective treatment of osteosarcoma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The evolution of polymer based nanoparticles as a drug delivery carrier via pharmaceutical nano/microencapsulation has greatly promoted the development of nano- and micro-medicine in the past few decades. Poly(lactide-co-glycolide) (PLGA) and chitosan, which are biodegradable and biocompatible polymers, have been approved by both the Food & Drug Administration (FDA) and European Medicine Agency (EMA), making them ideal biomaterials that can be advanced from laboratory development to clinical oral and parental administrations. PLGA and chitosan encapsulated nanoparticles (NPs) have successfully been developed as new oral drug delivery systems with demonstrated high efficacy. This review aims to provide a comprehensive overview of the fabrication of PLGA and chitosan particulate systems using nano/microencapsulation methods, the current progress and the future outlooks of the nanoparticulate drug delivery systems. Especially, we focus on the formulations and nano/micro-encapsulation techniques using top-down techniques. It also addresses how the different phases including the organic and aqueous ones in the emulsion system interact with each other and subsequently influence the properties of the drug delivery system. Besides, surface modification strategies which can effectively engineer intrinsic physicochemical properties are summarised. Finally, future perspectives and potential directions of PLGA and chitosan nano/microencapsulated drug systems are outlined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel PLA-based polymer containing reactive pendent ketone or hydroxyl groups was synthesized by the copolymerization of L-lactide with epsilon-caprolactone-based monomers. The polymer was activated with NPC, resulting in an amine-reactive polymer which was then cast into thin polymeric films, either alone or as part of a blend with PLGA, before immersion into a solution of the cell adhesion peptide GRGDS in PBS buffer allowed for conjugation of GRGDS to the film surfaces. Subsequent 3T3 fibroblast cell adhesion studies demonstrated an increase in cellular adhesion and spreading over films cast from unmodified PLGA. Hence the new polymer can be used to obtain covalent linkage of amine-containing molecules to polymer surfaces.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The demands of multifunctional scaffolds have exceeded the passive biocompatible properties previously considered sufficient for tissue engineering. Herein, a novel and facile method used to fabricate a core-shell structure consisting of a conducting fiber core and an electrospun fiber shell is presented. This multifunctional structure simultaneously provides the high conductivity of conducting polymers as well as the enhanced interactions between cells and the sub-micron topographical environments provided by highly aligned cytocompatible electrospun fibers. Unlimited lengths of PEDOT:PSS-Chitosan-PLGA fibers loaded with an antibiotic drug, ciprofloxacin hydrochloride, were produced using this method. The fibers provide modulated drug release with excellent mechanical properties, electrochemical performance and cytocompatibility, which hold great promise for the application of conductive electrospun scaffolds in regenerative medicine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A systematic approach was developed to investigate the stability of gentamicin sulfate (GS) and GS/poly (lactic-co-glycolic acid) (PLGA) coatings on hydroxyapatite surfaces. The influence of environmental factors (light, humidity, oxidation and heat) upon degradation of the drug in the coatings was investigated using liquid chromatography with evaporative light scattering detection and mass spectrometry. GS coated rods were found to be stable across the range of environments assessed, with only an oxidizing atmosphere resulting in significant changes to the gentamicin composition. In contrast, rods coated with GS/PLGA were more sensitive to storage conditions with compositional changes being detected after storage at 60 °C, 75% relative humidity or exposure to light. The effect of γ-irradiation on the coated rods was also investigated and found to have no significant effect. Finally, liquid chromatography–mass spectrometry analysis revealed that known gentamines C1, C1a and C2 were the major degradants formed. Forced degradation of gentamicin coatings did not produce any unexpected degradants or impurities.