991 resultados para PLACENTAL DEVELOPMENT


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Colonisation of the maternal uterine wall by the trophoblast involves a series of alterations in the behaviour and morphology of trophoblast cells. Villous cytotrophoblast cells change from a well-organised coherently layered phenotype to one that is extravillous, acquiring a proliferative, migratory and invasive capacity, to facilitate fetal-maternal interaction. These changes are similar to those of other developmental processes falling under the umbrella of an epithelial-mesenchymal transition (EMT). Modulation of cell adhesion and cell polarity occurs through changes in cell-cell junctional molecules, such as the cadherins. The cadherins, particularly the classical cadherins (e.g. Epithelial-(E)-cadherin), and their link to adaptors called catenins at cell-cell contacts, are important for maintaining cell attachment and the layered phenotype of the villous cytotrophoblast. In contrast, reduced expression and re-organization of cadherins from these cell junctional regions promote a loosened connection between cells, coupled with reduced apico-basal polarity. Certain non-classical cadherins play an active role in cell migration processes. In addition to the classical cadherins, two other cadherins which have been reported in placental tissues are vascular endothelial (VE) cadherin and cadherin-11. Cadherin molecules are well placed to be key regulators of trophoblast cell behaviour, analogous to their role in other developmental EMTs. This review addresses cadherin expression and function in normal and diseased human placental tissues, especially in fetal growth restriction and pre-eclampsia where trophoblast invasion is reduced.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Stereology is an established method to extrapolate three-dimensional quantities from two-dimensional images. It was applied to placentation in the mouse, but not yet for other rodents. Herein, we provide the first study on quantitative placental development in a sigmodontine rodent species with relatively similar gestational time. Placental structure was also compared to the mouse, in order to evaluate similarities and differences in developmental patterns at the end of gestation. Methods: Fetal and placental tissues of Necromys lasiurus were collected and weighed at 3 different stages of gestation (early, mid and late gestation) for placental stereology. The total and relative volumes of placenta and of its main layers were investigated. Volume fractions of labyrinth components were quantified by the One Stop method in 31 placentae collected from different individuals, using the Mercator® software. Data generated at the end of gestation from N. lasiurus placentae were compared to those of Mus musculus domesticus obtained at the same stage. Results: A significant increase in the total absolute volumes of the placenta and its main layers occurred from early to mid-gestation, followed by a reduction near term, with the labyrinth layer becoming the most prominent area. Moreover, at the end of gestation, the total volume of the mouse placenta was significantly increased compared to that of N. lasiurus although the proportions of the labyrinth layer and junctional zones were similar. Analysis of the volume fractions of the components in the labyrinth indicated a significant increase in fetal vessels and sinusoidal giant cells, a decrease in labyrinthine trophoblast whereas the proportion of maternal blood space remained stable in the course of gestation. On the other hand, in the mouse, volume fractions of fetal vessels and sinusoidal giant cells decreased whereas the volume fraction of labyrinthine trophoblast increased compared to N. lasiurus placenta. Conclusions: Placental development differed between N. lasiurus and M. musculus domesticus. In particular, the low placental efficiency in N. lasiurus seemed to induce morphological optimization of fetomaternal exchanges. In conclusion, despite similar structural aspects of placentation in these species, the quantitative dynamics showed important differences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Normal placentation involves the development of an utero-placental circulation following the migration of the extravillous cytotrophoblasts into the decidua and invasion of the spiral arteries, which are thereby transformed into large vessels of low resistance. Given the documented role of the receptor tyrosine kinase EphB4 and its ligand ephrin-B2 in the establishment of the embryonal vascular network, we hypothesized that these molecules are also instrumental in the development of the human placenta. Monitoring the expression during placental development revealed that in first trimester and term placentae both molecules are equally expressed at the RNA level. In contrast, the protein levels were significantly reduced during gestation. Immunohistochemistry revealed a distinct localization of the EphB4 and ephrin-B2 proteins. EphB4 was predominantly expressed in the villous syncytial trophoblast layer and in a subset of intravillous capillaries. Prominent expression was also observed in the extravillous cytotrophoblast giant cells. In contrast, ephrin-B2 expression was detected in the villous cytotrophoblast and syncytial trophoblast cell layers, as well as initially in all intravillous capillaries. Strong expression was also observed in extravillous anchoring cytotrophoblast cells. Hypoxia is a major inducer of placental development. In vitro studies employing trophoblast-derived cell lines revealed that predominantly ephrin-B2 expression is induced by hypoxia, however, in an Hif-1alpha independent manner. These experiments suggest that EphB4 and ephrin-B2 are instrumental in the establishment of a functional placental structure and of the utero-placental circulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Feto-placental development in the rabbit is altered by maternal food restriction from early pregnancy Maternal under-nutrition can induce Intrauterine Growth Restriction by placental insufficiency. To determine the consequences in the rabbit feto-placental unit, 32 pregnant rabbits were allocated in three feeding groups: ad libitum diet (Group C; n=9); restricted to 50% of their ad libitum intake during the pre-implantational period (Day 0 to Day 7) (Group PR; n=11) or restricted from Day 0 to Day 28 (Group TR; n=12).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The placenta contains several types of feto-maternal interfaces where zygote-derived cells interact with maternal cells or maternal blood for the promotion of fetal growth and viability. The genetic factors regulating the interactions between different cell types within feto-maternal interfaces and the relative contributions of the maternal and zygotic genomes are poorly understood. Genomic imprinting, the epigenetic process responsible for parental origin-dependent functional differences between homologous chromosomes, has been proposed to contribute to these events. Previous studies showed that mouse conceptuses with an absence of imprinted differences between the two copies of chromosome 12 (upon paternal inheritance of both copies) die late in gestation and have a variety of defects, including placentomegaly. Here we examined the role of chromosome 12 imprinting in these placentae in more detail. We show that the spatial interactions between different cell types within feto-maternal interfaces are defective and identify abnormal behaviors in both zygote-derived and maternal cells that are attributed to the genome of the zygote but not the mother. These include compromised invasion of the maternal decidualized endometrium and the central maternal artery situated within it by zygote-derived trophoblast, abnormalities in the wall of the central maternal artery, and defects within the zygote-derived cellular layer of the labyrinth, which is in direct contact with maternal blood. These findings demonstrate multiple roles for chromosome 12 imprinting in the placenta that have not previously been associated with imprinting effects. They provide insights into the function of imprinting in placental development and have evolutionary and clinical implications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To determine if low dietary protein concentration in the first two trimesters of pregnancy alters placental development, genetically similar heifers from closed herd were fed diets containing different levels of protein in the first and second trimesters of gestation. There were four animals per treatment group, the groups being: L/L = fed a diet containing 7% crude protein (CP) (low protein) in the first and second trimesters; H/H = fed a diet containing 14% (P thigh protein) in the first and second trimesters; L/H = fed low protein in the first trimester and high in the second trimester and vice versa for the H/L group. Low protein diets in the first trimester increased dry cotyledon weight at term. Trophectoderm volume density increased in the H/L and L/H group compared to the L/L and H/H groups. Blood vessel volume and volume density in foetal villi decreased in the H/L and L/H groups compared with the H/H and L/L groups. There was no effect of diet treatment on cotyledon number, diameter or wet weight and no effect on the volume density of connective tissue or fibroblasts in the foetal villi. These results show that a low dietary protein concentration in the first trimester of pregnancy followed by increased protein in the second trimester enhanced placental development. Further, trophectoderm volume was highly correlated with birth weight. Early protein restriction in the pregnant cow may enhance foetal growth in part by stimulating placental growth and function. (C) 1999 Published by Elsevier Science B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Signal transducers and activators of transcription 3 (STAT3) has been identified as an important signal transducer in the invasive phenotype of the trophoblasts cells in in vitro studies. However, the in situ distribution and patterns of expression of this molecule in trophoblast cells during the development of the placenta are still under-elucidated. Mice uteri of gestational ages between 7 and 14 days of pregnancy (dop) were fixed in methacarn and processed with immunoperoxidase techniques for detection of STAT3 and its phosphorylation at serine (p-ser727) residues, as well as the suppressor of cytokine signaling 3 (SOCS3) expression. STAT3 was observed at 7 through 9 dop in both the antimesometrial and mesometrial deciduas, while continued immunoreactivity between 10 and 13 dop was seen only in the mesometrial decidua. In the placenta, STAT3 was detected in the cytotrophoblast cells of labyrinth and giant trophoblast cells between 10 and 14 dop. Immunoreactivity for STAT3 was also seen in trophoblast cells surrounding the maternal blood vessels. On days 10 and 11 of pregnancy, p-ser727 was detectable in the mesometrial decidua and in giant trophoblasts, while during 12-14 dop in the spongiotrophoblast region. In addition, SOCS3 was immunodetected in maternal and placental tissues, principally in the giant trophoblast cells during the whole period of the study. The present in situ study shows the distribution of STAT3, its serine activation and SOCS3 in different maternal and fetal compartments during murine placental development, thus further supporting the idea that they play a role during physiological placentation in mice.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Measurements on the growth process and placental development of the embryo and fetuses of Cavia porcellus were carried out using ultrasonography. Embryo, fetus, and placenta were monitored from Day 15 after mating day to the end of gestation. Based on linear and quadratic regressions, the following morphometric analysis showed a good indicator of the gestational age: placental diameter, biparietal diameter, renal length, and crown rump. The embryonic cardiac beat was first detected at an average of 22.5 days. The placental diameter showed constant increase from beginning of gestation then remained to term and presented a quadratic correlation with gestational age (r2 = 0.89). Mean placental diameter at the end of pregnancy was 3.5 ± 0.23 cm. By Day 30, it was possible to measure biparietal diameter, which followed a linear pattern of increase up to the end of gestation (r2 = 0.95). Mean biparietal diameter in the end of pregnancy was 1.94 ± 0.03 cm. Kidneys were firstly observed on Day 35 as hyperechoic structures without the distinction of medullar and cortical layers, thus the regression model equation between kidney length and gestational age presents a quadratic relationship (r2 = 0.7). The crown rump presented a simple linear growth, starting from 15 days of gestation, displaying a high correlation with the gestational age (r2 = 0.9). The offspring were born after an average gestation of 61.3 days. In this study, we conclude that biparietal diameter, placental diameter, and crown rump are adequate predictive parameters of gestational age in guinea pigs because they present high correlation index.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The serine protease CAP1/Prss8 is crucial for skin barrier function, lung alveolar fluid clearance and has been unveiled as diagnostic marker for specific cancer types. Here, we show that a constitutive knockout of CAP1/Prss8 leads to embryonic lethality. These embryos presented no specific defects, but it is during this period, and in particular at E13.5, that wildtype placentas show an increased expression of CAP1/Prss8, thus suggesting a placental defect in the knockout situation. The placentas of knockout embryos exhibited significantly reduced vascular development and incomplete cellular maturation. In contrary, epiblast-specific deletion of CAP1/Prss8 allowed development until birth. These CAP1/Prss8-deficient newborns presented abnormal epidermis, and died soon after birth due to impaired skin function. We thus conclude that a late placental insufficiency might be the primary cause of embryonic lethality in CAP1/Prss8 knockouts. This study highlights a novel and crucial role for CAP1/Prss8 in placental development and function.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Placental formation and genomic imprinting are two important features of embryonic development in placental mammals. Genetic studies have demonstrated that imprinted genes play a prominent role in regulating placental formation. In marsupials, mice and humans, the paternally derived X chromosome is preferentially inactivated in the placental tissues of female embryos. This special form of genomic imprinting may have evolved under the same selective forces as autosomal imprinted genes. This chromosomal imprinting phenomenon predicts the existence of maternally expressed X-linked genes that regulate placental development.^ In this study, an X-linked homeobox gene, designated Esx1 has been isolated. During embryogenesis, Esx1 was expressed in a subset of placental tissues and regulates formation of the chorioallantoic placenta. Esx1 acted as an imprinted gene. Heterozygous female mice that inherit an Esx1-null allele from their father developed normally. However, heterozygous females that inherit the Esx1 mutation from their mother were born 20% smaller than normal and had an identical phenotype to hemizygous mutant males and homozygous mutant females. Surprisingly, although Esx1 mutant embryos were initially comparable in size to wild-type controls at 13.5 days post coitum (E13.5) their placentas were significantly larger (51% heavier than controls). Defects in the morphogenesis of the labyrinthine layer were observed as early as E11.5. Subsequently, vascularization abnormalities developed at the maternal-fetal interface, causing fetal growth retardation. These results identify Esx1 as the first essential X-chromosome-imprinted regulator of placental development that influences fetal growth and may have important implications in understanding human placental insufficiency syndromes such as intrauterine growth retardation (IUGR). ^