995 resultados para PHYSICS, MATHEMATICAL


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The basic concepts and techniques involved in the development and analysis of mathematical models for individual neurons and networks of neurons are reviewed. Some of the interesting results obtained from recent work in this field are described. The current status of research in this field in India is discussed

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We consider the raise and peel model of a one-dimensional fluctuating interface in the presence of an attractive wall. The model can also describe a pair annihilation process in disordered unquenched media with a source at one end of the system. For the stationary states, several density profiles are studied using Monte Carlo simulations. We point out a deep connection between some profiles seen in the presence of the wall and in its absence. Our results are discussed in the context of conformal invariance ( c = 0 theory). We discover some unexpected values for the critical exponents, which are obtained using combinatorial methods. We have solved known ( Pascal`s hexagon) and new (split-hexagon) bilinear recurrence relations. The solutions of these equations are interesting in their own right since they give information on certain classes of alternating sign matrices.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Based on a divide and conquer approach, knowledge about nature has been organized into a set of interrelated facts, allowing a natural representation in terms of graphs: each `chunk` of knowledge corresponds to a node, while relationships between such chunks are expressed as edges. This organization becomes particularly clear in the case of mathematical theorems, with their intense cross-implications and relationships. We have derived a web of mathematical theorems from Wikipedia and, thanks to the powerful concept of entropy, identified its more central and frontier elements. Our results also suggest that the central nodes are the oldest theorems, while the frontier nodes are those recently added to the network. The network communities have also been identified, allowing further insights about the organization of this network, such as its highly modular structure.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We review recent progress in the mathematical theory of quantum disordered systems: the Anderson transition, including some joint work with Marchetti, the (quantum and classical) Edwards-Anderson (EA) spin-glass model and return to equilibrium for a class of spin-glass models, which includes the EA model initially in a very large transverse magnetic field. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4770066]

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We analytically study the input-output properties of a neuron whose active dendritic tree, modeled as a Cayley tree of excitable elements, is subjected to Poisson stimulus. Both single-site and two-site mean-field approximations incorrectly predict a nonequilibrium phase transition which is not allowed in the model. We propose an excitable-wave mean-field approximation which shows good agreement with previously published simulation results [Gollo et al., PLoS Comput. Biol. 5, e1000402 (2009)] and accounts for finite-size effects. We also discuss the relevance of our results to experiments in neuroscience, emphasizing the role of active dendrites in the enhancement of dynamic range and in gain control modulation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the present dissertation we consider Feynman integrals in the framework of dimensional regularization. As all such integrals can be expressed in terms of scalar integrals, we focus on this latter kind of integrals in their Feynman parametric representation and study their mathematical properties, partially applying graph theory, algebraic geometry and number theory. The three main topics are the graph theoretic properties of the Symanzik polynomials, the termination of the sector decomposition algorithm of Binoth and Heinrich and the arithmetic nature of the Laurent coefficients of Feynman integrals.rnrnThe integrand of an arbitrary dimensionally regularised, scalar Feynman integral can be expressed in terms of the two well-known Symanzik polynomials. We give a detailed review on the graph theoretic properties of these polynomials. Due to the matrix-tree-theorem the first of these polynomials can be constructed from the determinant of a minor of the generic Laplacian matrix of a graph. By use of a generalization of this theorem, the all-minors-matrix-tree theorem, we derive a new relation which furthermore relates the second Symanzik polynomial to the Laplacian matrix of a graph.rnrnStarting from the Feynman parametric parameterization, the sector decomposition algorithm of Binoth and Heinrich serves for the numerical evaluation of the Laurent coefficients of an arbitrary Feynman integral in the Euclidean momentum region. This widely used algorithm contains an iterated step, consisting of an appropriate decomposition of the domain of integration and the deformation of the resulting pieces. This procedure leads to a disentanglement of the overlapping singularities of the integral. By giving a counter-example we exhibit the problem, that this iterative step of the algorithm does not terminate for every possible case. We solve this problem by presenting an appropriate extension of the algorithm, which is guaranteed to terminate. This is achieved by mapping the iterative step to an abstract combinatorial problem, known as Hironaka's polyhedra game. We present a publicly available implementation of the improved algorithm. Furthermore we explain the relationship of the sector decomposition method with the resolution of singularities of a variety, given by a sequence of blow-ups, in algebraic geometry.rnrnMotivated by the connection between Feynman integrals and topics of algebraic geometry we consider the set of periods as defined by Kontsevich and Zagier. This special set of numbers contains the set of multiple zeta values and certain values of polylogarithms, which in turn are known to be present in results for Laurent coefficients of certain dimensionally regularized Feynman integrals. By use of the extended sector decomposition algorithm we prove a theorem which implies, that the Laurent coefficients of an arbitrary Feynman integral are periods if the masses and kinematical invariants take values in the Euclidean momentum region. The statement is formulated for an even more general class of integrals, allowing for an arbitrary number of polynomials in the integrand.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Vol III. Elasticity, heat, electro-magnetism; IV. Hydrodynamics and general dynamics; V. Thermodynamics, cosmical and geological physics, molecular and crystalline theory, electrodynamics; VI. Voltaic theory, radioactivity, electrons, navigation and tides, miscellaneous.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The particle-based lattice solid model developed to study the physics of rocks and the nonlinear dynamics of earthquakes is refined by incorporating intrinsic friction between particles. The model provides a means for studying the causes of seismic wave attenuation, as well as frictional heat generation, fault zone evolution, and localisation phenomena. A modified velocity-Verlat scheme that allows friction to be precisely modelled is developed. This is a difficult computational problem given that a discontinuity must be accurately simulated by the numerical approach (i.e., the transition from static to dynamical frictional behaviour). This is achieved using a half time step integration scheme. At each half time step, a nonlinear system is solved to compute the static frictional forces and states of touching particle-pairs. Improved efficiency is achieved by adaptively adjusting the time step increment, depending on the particle velocities in the system. The total energy is calculated and verified to remain constant to a high precision during simulations. Numerical experiments show that the model can be applied to the study of earthquake dynamics, the stick-slip instability, heat generation, and fault zone evolution. Such experiments may lead to a conclusive resolution of the heat flow paradox and improved understanding of earthquake precursory phenomena and dynamics. (C) 1999 Academic Press.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Along with their essential role in electricity transmission and distribution, some powerlines also generate large concentrations of corona ions. This study aimed at comprehensive investigation of corona ions, vertical dc e-field, ambient aerosol particle charge and particle number concentration levels in the proximity of some high/sub-transmission voltage powerlines. The influence of meteorology on the instantaneous value of these parameters, and the possible existence of links or associations between the parameters measured were also statistically investigated. The presence of positive and negative polarities of corona ions was associated with variation in the mean vertical dc e-field, ambient ion and particle charge concentration level. Though these variations increased with wind speed, their values also decreased with distance from the powerlines. Predominately positive polarities of ions were recorded up to a distance of 150 m (with the maximum values recorded 50 m downwind of the powerlines). At 200 m from the source, negative ions predominated. Particle number concentration levels however remained relatively constant (103 particle cm-3) irrespective of the sampling site and distance from the powerlines. Meteorological factors of temperature, humidity and wind direction showed no influence on the electrical parameters measured. The study also discovered that e-field measurements were not necessarily a true representation of the ground-level ambient ion/particle charge concentrations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background, aim, and scope Urban motor vehicle fleets are a major source of particulate matter pollution, especially of ultrafine particles (diameters < 0.1 µm), and exposure to particulate matter has known serious health effects. A considerable body of literature is available on vehicle particle emission factors derived using a wide range of different measurement methods for different particle sizes, conducted in different parts of the world. Therefore the choice as to which are the most suitable particle emission factors to use in transport modelling and health impact assessments presented as a very difficult task. The aim of this study was to derive a comprehensive set of tailpipe particle emission factors for different vehicle and road type combinations, covering the full size range of particles emitted, which are suitable for modelling urban fleet emissions. Materials and methods A large body of data available in the international literature on particle emission factors for motor vehicles derived from measurement studies was compiled and subjected to advanced statistical analysis, to determine the most suitable emission factors to use in modelling urban fleet emissions. Results This analysis resulted in the development of five statistical models which explained 86%, 93%, 87%, 65% and 47% of the variation in published emission factors for particle number, particle volume, PM1, PM2.5 and PM10 respectively. A sixth model for total particle mass was proposed but no significant explanatory variables were identified in the analysis. From the outputs of these statistical models, the most suitable particle emission factors were selected. This selection was based on examination of the statistical robustness of the statistical model outputs, including consideration of conservative average particle emission factors with the lowest standard errors, narrowest 95% confidence intervals and largest sample sizes, and the explanatory model variables, which were Vehicle Type (all particle metrics), Instrumentation (particle number and PM2.5), Road Type (PM10) and Size Range Measured and Speed Limit on the Road (particle volume). Discussion A multiplicity of factors need to be considered in determining emission factors that are suitable for modelling motor vehicle emissions, and this study derived a set of average emission factors suitable for quantifying motor vehicle tailpipe particle emissions in developed countries. Conclusions The comprehensive set of tailpipe particle emission factors presented in this study for different vehicle and road type combinations enable the full size range of particles generated by fleets to be quantified, including ultrafine particles (measured in terms of particle number). These emission factors have particular application for regions which may have a lack of funding to undertake measurements, or insufficient measurement data upon which to derive emission factors for their region. Recommendations and perspectives In urban areas motor vehicles continue to be a major source of particulate matter pollution and of ultrafine particles. It is critical that in order to manage this major pollution source methods are available to quantify the full size range of particles emitted for traffic modelling and health impact assessments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This article presents the results of a study on the association between measured air pollutants and the respiratory health of resident women and children in Lao PDR, one of the least developed countries in Southeast Asia. The study, commissioned by the World Health Organisation, included PM10, CO and NO2 measurements made inside 181 dwellings in nine districts within two provinces in Lao PDR over a 5- month period (12/05–04/06), and respiratory health information (via questionnaires and peak expiratory flow rate (PEFR) measurements) for all residents in the same dwellings. Adjusted odds ratios were calculated separately for each health outcome using binary logistic regression. There was a strong and consistent positive association between NO2 and CO for almost all questionnaire-based health outcomes for both women and children. Women in dwellings with higher measured NO2 had more than triple of the odds of almost all of the health outcomes, and higher concentrations of NO2 and CO were significantly associated with lower PEFR. This study supports a growing literature confirming the role of indoor air pollution in the burden of respiratory disease in developing countries. The results will directly support changes in health and housing policy in Lao PDR.

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The local electric-field distribution has been investigated in a core-shell cylindrical metamaterial structure under the illumination of a uniform incident optical field. The structure consists of a homogeneous dielectric core, a shell of graded metal-dielectric metamaterial, embedded in a uniform matrix. In the quasistatic limit, the permittivity of the metamaterial is given by the graded Drude model. The local electric potentials and hence the electric fields have been derived exactly and analytically in terms of hypergeometric functions. Our results showed that the peak of the electric field inside the cylindrical shell can be confined in a desired position by varying the frequency of the optical field and the parameters of the graded profiles. Thus, by fabricating graded metamaterials, it is possible to control electric-field distribution spatially. We offer an intuitive explanation for the gradation-controlled electric-field distribution.