987 resultados para PHASE-BEHAVIOR


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The synthetic lipid 1,2-dimyristoyl-sn-3-phosphoglycerol (DMPG), when dispersed in water/NaCl exhibits a complex phase behavior caused by its almost unlimited swelling in excess water. Using deuterium ((2)H)- and phosphorus ((31)P)-NMR we have studied the molecular properties of DMPG/water/NaCl dispersions as a function of lipid and NaCl concentration. We have measured the order profile of the hydrophobic part of the lipid bilayer with deuterated DMPG while the orientation of the phosphoglycerol headgroup was deduced from the (31)P NMR chemical shielding anisotropy. At temperatures > 30 degrees C we observe well-resolved (2)H- and (31)P NMR spectra not much different from other liquid crystalline bilayers. From the order profiles it is possible to deduce the average length of the flexible fatty acyl chain. Unusual spectra are obtained in the temperature interval of 20-25 degrees C, indicating one or several phase transitions. The most dramatic changes are seen at low lipid concentration and low ionic strength. Under these conditions and at 25 degrees C, the phosphoglycerol headgroup rotates into the hydrocarbon layer and the hydrocarbon chains show larger flexing motions than at higher temperatures. The orientation of the phosphoglycerol headgroup depends on the bilayer surface charge and correlates with the degree of dissociation of DMPG-Na(+). The larger the negative surface charge, the more the headgroup rotates toward the nonpolar region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phase behavior, morphology and crystallization in blends of a low-molecular-weight (Mn = 1400) double-crystalline polyethylene-block-poly(ethylene oxide) (PE-PEO) diblock copolymer with poly(hydroxyether of bisphenol A) (PH) were investigated by differential scanning calorimetry, transmission electron microscopy and small-angle X-ray scattering. The symmetric PE-PEO diblock copolymer consists of a PH-miscible PEO block and a PH-immiscible PE block. However, PH only exhibits partial miscibility with the PEO block of the copolymer in the PH/PE-PEO blends; both macrophase and microphase separations took place. There existed two macrophases in the PH/PE-PEO blends, i.e., a PH-rich phase and a PE-PEO copolymer-rich phase. The PE block of the copolymer in the blends exhibited fractionated crystallization behavior by homogeneous nucleation. There appeared three crystallization exotherms related to the crystallization of the PE block within three different microenvironments in the PH/PE-PEO blends.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanostructured thermoset blends of bisphenol A-type epoxy resin (ER) and amphiphilic poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymers were successfully prepared. Two samples of PEO-PPO-PEO triblock copolymer with different ethylene oxide (EO) contents, denoted as EO30 with 30 wt % EO content and EO80 with 80 wt % EO content, were used to form the self-organized thermoset blends of varying compositions using 4,4'-methylenedianiline (MDA) as curing agent. The phase behavior, crystallization, and morphology were investigated by differential scanning calorimetry (DSC), transmission electron microscopy (TEM), atomic force microscopy (AFM), and small-angle X-ray scattering (SAXS). It was found that macroscopic phase separation took place in the MDA-cured ER/EO30 blends containing 60-80 wt % EO30 triblock copolymer. The MDA-cured ER/EO30 blends with EO30 content up to 50 wt % do not show macroscopic phase separation but exhibit nanostructures on the order of 10-30 nm as revealed by both the TEM and SAXS studies. The AFM study further shows that the ER/EO30 blend at some composition displays structural inhomogeneity at two different nanoscales and is hierarchically nanostructured. The spherical PPO domains with an average size of about 10 nm are uniformly dispersed in the 80/20 ER/EO30 blend; meanwhile, a structural inhomogeneity on the order of 50-200 nm is observed. The ER/EO80 blends are not macroscopically phase-separated over the entire composition range because of the much higher PEO content of the EO80 triblock copolymer. However, the ER/EO80 blends show composition-dependent nanostructures on the order of 10-100 nm. The 80/20 ER/EO80 blend displays hierarchical structures at two different nanoscales, i.e., a bicontinuous microphase structure on the order of about 100 nm and spherical domains of 10-20 nm in diameter uniformly dispersed in both the continuous microphases. The blends with 60 wt % and higher EO80 content are completely volume-filled with spherulites. Bundles of PEO lamellae with spacing of 20-30 nm interwoven with a microphase structure on the order of about 100 nm are revealed by AFM study for the 30/70 ER/EO80 blend.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Block ionomer complexes SSEBS-c-PCL were prepared, as a consequence of proton transfer from the sulfonic acid of sulfonated polystyrene-block- poly(ethylene-ran-butylene)-block-polystyrene (SSEBS) to the tertiary amine of a tertiary amine terminated poly(?-caprolactone) (APCL). The phase behavior of SSEBS-c-PCL was thoroughly investigated and the results showed that APCL in SSEBS-c-PCL displays unique crystallization behavior owing to the influence of interactions between the amine and sulfonic acid groups as well as the effects of confinement. Further, small-angle X-ray scattering study revealed that SSEBS-c-PCL displays a less ordered micro-phase structure compared to SSEBS. A quantitative mapping of mechanical properties at the nanoscale was achieved using peak force mode atomic force microscopy. It is found that the block ionomer complex possesses a higher average elastic modulus after complexation with crystallizable APCL. Additionally, the moduli for both hard and soft phases increase and the phase with higher modulus assignable to the hard SPS component shows much more pronounced changes after complexation, confirming that APCL interacts mainly with the SPS blocks. This provides an understanding of the composition and nanomechanical properties of these new block ionomer complexes and an alternative insight into the micro-phase structures of multi-phase materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on the thermal, structural and conductivity properties of the organic ionic plastic crystal (OIPC) N-methyl-N-methyl-pyrrolidinium dicyanamide [C1mpyr][N(CN)2] mixed with the sodium salt Na[N(CN)2]. The DSC thermal traces indicate that an isothermal transition, which may be a eutectic melting, occurs at ~ 89 °C, below which all compositions are entirely in the solid phase. At 20 mol% Na[N(CN)2], this transition is the final melt for this mixture, and a new liquidus peak grows beyond 20 mol% Na[N(CN)2]. The III- > II solid-solid phase transition continues to be evident at ~- 2 °C. The microstructure for all the mixtures indicated a phase separated morphology where precipitates can be clearly observed. Most likely, these precipitates consist of a Na-rich second phase. This was also suggested from the vibrational spectroscopy and the 23Na NMR spectra. The lower concentrations of Na[N(CN)2] present complex 23Na MAS spectra, suggesting more than one sodium ion environment is present in these mixtures consistent with complex phase behavior. Unlike other OIPCs where the ionic conductivity usually increases upon doping or mixing in a second component, the conductivity of these mixtures remains relatively constant and above 10- 4 S cm- 1 at ∼ 80 °C, even in the solid state. Such high conductivities suggest these materials may be promising to be used for all solid-state electrochemical devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of the micelle-forming surfactant series alkyltrimethylammonium bromide (C(n)TAB, n = 12, 14, 16 and 18) on the thermotropic phase behavior of dioctadecyldimethylammonium bromide (DODAB) vesicles in water was investigated by differential scanning calorimetry at constant 5.0 mM total surfactant concentration and varying individual surfactant concentrations. The pre-, post- and main transition temperatures (T-s, T-p and T-m), melting enthalpy (Delta H) and peak width of the main transition (Delta T-1/2) are reported as a function of the surfactant molar fraction. No clear dependence of these parameters on the C(n)TAB chain length was found. At 5 mM, neat DODAB in water exhibits two transition temperatures, T-s = 32.1 and T-m = 42.7 degrees C, as obtained from the DSC upscans, but not a clear T-p. For every n, except n = 12, T-s vanishes as CnTAB concentration increases and approaches CMC. T-m behaves differently for different n, the longer C(14)TAB and C(16)TAB decrease, while C(18)TAB increases T-m with increasing concentration. The data indicate that changes in T-m, T-s, T-p and Delta H of the transition are related not only to the extent of C(n)TAB affinity to DODAB but also to the surfactant chain length. Accordingly, C18TAB yields a more compact bilayer, thus increasing T-m, while C(14)TAB and C(1G)TAB yield a less organized bilayer and reduce T-m. C(12)TAB does not much affect T-s and T-m, although it yields T-p approximate to 51.6 degrees C. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The understanding of biological membranes may be improved by investigating physical properties of vesicles from natural or synthetic amphiphiles. The application of vesicles as mimetic agents depends on the knowledgment of their structure and properties. Vesicles having different curvature and size may be obtained using different preparation protocols. We have used differential scanning calorimetry (DSC) and steady-state fluorescence to investigate the gel to liquid-crystal phase transition of vesicles prepared by sonication (SUV) and non-sonication (GUV) of the synthetic dioctadecyldimethylammonium bromide (DODAB) in aqueous solution. DSC thermograms for a non-sonicated dispersion show a well-defined pre- and main transition corresponding to two narrow peaks at 36 and 45°C in the first upscan, while in a second upscan, only the main peak was observed. The sharpness of the peaks indicate a cooperative phase behavior for GUV. For a sonicated DODAB dispersion, the first upscan shows a third peak at 40.3°C, whereas for the second upscan the peaks are not well-defined, indicating a less cooperative phase behavior. Alternatively, the fluorescence quantum yield (Φ f) and the anisotropy (r) of trans, trans, trans-1-[4-(3-carboxypropyl)-phenyl]-6-[4-butylphenyl]-1,3,5-hexatriene (4H4A) and the ratio I 1/I 3 of the first to the third vibronic peaks of the pyrene emission spectrum as function of temperature are used as well to describe the phase behavior of DODAB sonicated and non-sonicated dispersions. It is in good agreement with the DSC results that the cooperativity of the thermotropic process is diminished under sonication of the DODAB dispersion, meaning that sonication changes from homogeneous to heterogeneous populations of the amphiphile aggregates. The pre- and main transitions obtained from these techniques are in fairly good accord with results from the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A phase diagram of the pseudo-ternary Aerosol OT (AOT) + n-butanol/n-heptane/water system, at a mass ratio of AOT/n-butanol = 2, is presented. Conductivity measurements showed that within the vast one-phase microemulsion region observed, the structural transition from water-in-oil to oil-in-water microemulsion occurs continuously without phase separation. This pseudo-ternary system was applied to the synthesis of carbon-supported Pt 70Fe30 nanoparticles, and it was found that nanoparticles prepared in microemulsions containing n-butanol have more Fe than those prepared in ternary microemulsions of AOT/n-heptane/water under similar conditions. It was verified that introducing n-butanol as a cosurfactant into the AOT/n-heptane/water system lead to complete reduction of the Fe ions that allowed obtaining alloyed PtFe nanoparticles with the desired composition, without the need of preparing functionalized surfactants and/or the use of inert atmosphere. © 2007 American Chemical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The PEG-Ficoll polymer phase system is one that has been overlooked in the past for biotechnology applications because of the stability of its emulsions. However, new applications, such as emulsion coating of cells, are appearing that rely on this very property. Ficoll is highly polydisperse and multimodal with three distinct Ficoll peaks in gel permeation chromatography. As a result, the transition between one-phase and two-phase systems is blurred and the binodials obtained through turbidometric titration and tie-line analysis differ significantly. Moreover, since the three Ficoll peaks partition differently, tie-line analysis cannot be described by a simple model of the aqueous two-phase system. A simple modification to the model allowed for excellent fit, and this modification may prove well-suited for the many practical cases where aqueous two-phase systems fail to display parallel tie-lines as implicitly assumed in the simpler model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermosetting blends of a biodegradable poly(ethylene glycol)-type epoxy resin (PEG-ER) and poly(epsilon-caprolactone) (PCL) were prepared via an in situ curing reaction of poly(ethylene glycol) diglycidyl ether (PEGDGE) and maleic anhydride (MAH) in the presence of PCL. The miscibility, phase behavior, crystallization, and morphology of these blends were investigated. The uncured PCL/PEGDGE blends were miscible, mainly because of the entropic contribution, as the molecular weight of PEGDGE was very low. The crystallization and melting behavior of both PCL and the poly(ethylene glycol) (PEG) segment of PEGDGE were less affected in the uncured PCL/PEGDGE blends because of the very close glass-transition temperatures of PCL and PEGDGE. However, the cured PCL/PEG-ER blends were immiscible and exhibited two separate glass transitions, as revealed by differential scanning calorimetry and dynamic mechanical analysis. There existed two phases in the cured PCL/PEG-ER blends, that is, a PCL-rich phase and a PEG-ER crosslinked phase composed of an MAH-cured PEGDGE network. The crystallization of PCL was slightly enhanced in the cured blends because of the phase-separated nature; meanwhile, the PEG segment was highly restricted in the crosslinked network and was noncrystallizable in the cured blends. The phase structure and morphology of the cured PCL/PEG-ER blends were examined with scanning electron microscopy; a variety of phase morphologies were observed that depended on the blend composition. (C) 2004 Wiley Periodicals, Inc.