994 resultados para P2 receptors


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Aberrant dopaminergic signaling is a critical determinant in multiple psychiatric disorders, and in many disease states, dopamine receptor number is altered. Here we identify a molecular mechanism that selectively targets D2 receptors for degradation after their activation by dopamine. The degradative fate of D2 receptors is determined by an interaction with G protein coupled receptor-associated sorting protein (GASP). As a consequence of this GASP interaction, D2 responses in rat brain fail to resensitize after agonist treatment. Disruption of the D2-GASP interaction facilitates recovery of D2 responses, suggesting that modulation of the D2-GASP interaction is important for the functional down-regulation of D2 receptors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract RATIONALE: Previous studies have shown that orexin-1/hypocretin-1 receptors play a role in self-administration and cue-induced reinstatement of food, drug, and ethanol seeking. In the current study, we examined the role of orexin-1/hypocretin-1 receptors in operant self-administration of ethanol and sucrose and in yohimbine-induced reinstatement of ethanol and sucrose seeking. MATERIALS AND METHODS: Rats were trained to self-administer either 10% ethanol or 5% sucrose (30 min/day). The orexin-1 receptor antagonist SB334867 (0, 5, 10, 15, 20 mg/kg, i.p.) was administered 30 min before the operant self-administration sessions. After these experiments, the operant self-administration behaviors were extinguished in both the ethanol and sucrose-trained rats. Upon reaching extinction criteria, SB334867 (0, 5, 10 mg/kg, i.p.) was administered 30 min before yohimbine (0 or 2 mg/kg, i.p.). In a separate experiment, the effect of SB334867 (0, 15, or 20 mg/kg, i.p.) on general locomotor activity was determined using the open-field test. RESULTS: The orexin-1 receptor antagonist, SB334867 (10, 15 and 20 mg/kg) decreased operant self-administration of 10% ethanol but not 5% sucrose self-administration. Furthermore, SB334867 (5 and 10 mg/kg) significantly decreased yohimbine-induced reinstatement of both ethanol and sucrose seeking. SB334867 did not significantly affect locomotor activity measured using the open-field test. CONCLUSIONS: The results suggest that inhibition of OX-1/Hcrt-1 receptors modulates operant ethanol self-administration and also plays a significant role in yohimbine-induced reinstatement of both ethanol and sucrose seeking in rats.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extreme temperatures have been shown to have a detrimental effect on health. Hot temperatures can increase the risk of mortality, particularly in people suffering from cardiorespiratory diseases. Given the onset of climate change, it is critical that the impact of temperature on health is understood, so that effective public health strategies can correctly identify vulnerable groups within the population. However, while effects on mortality have been extensively studied, temperature–related morbidity has received less attention. This study applied a systematic review and meta–analysis to examine the current literature relating to hot temperatures and morbidity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fibroblast growth factor receptors (FGFRs) play diverse roles in the control of cell proliferation, cell differentiation, angiogenesis and development. Activating the mutations of FGFRs in the germline has long been known to cause a variety of skeletal developmental disorders, but it is only recently that a similar spectrum of somatic FGFR mutations has been associated with human cancers. Many of these somatic mutations are gain-of-function and oncogenic and create dependencies in tumor cell lines harboring such mutations. A combination of knockdown studies and pharmaceutical inhibition in preclinical models has further substantiated genomically altered FGFR as a therapeutic target in cancer, and the oncology community is responding with clinical trials evaluating multikinase inhibitors with anti-FGFR activity and a new generation of specific pan-FGFR inhibitors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purine compounds, such as caffeine, have many health-promoting properties and have proven to be beneficial in treating a number of different conditions. Theacrine, a purine alkaloid structurally similar to caffeine and abundantly present in Camellia kucha, has recently become of interest as a potential therapeutic compound. In the present study, theacrine was tested using a rodent behavioral model to investigate the effects of the drug on locomotor activity. Long Evans rats were injected with theacrine (24 or 48 mg/kg, i.p.) and activity levels were measured. Results showed that the highest dose of theacrine (48 mg/kg, i.p.) significantly increased locomotor activity compared to control animals and activity remained elevated throughout the duration of the session. To test for the involvement of adenosine receptors underlying theacrine's motor-activating properties, rats were administered a cocktail of the adenosine A₁ agonist, N⁶-cyclopentyladenosine (CPA; 0.1 mg/kg, i.p.) and A(2A) receptor agonist 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine (CGS-21680; 0.2 mg/kg, i.p.). Pre-treatment with theacrine significantly attenuated the motor depression induced by the adenosine receptor agonists, indicating that theacrine is likely acting as an adenosine receptor antagonist. Next, we examined the role of DA D₁ and D₂ receptor antagonism on theacrine-induced hyperlocomotion. Both antagonists, D₁R SCH23390 (0.1 or 0.05 mg/kg, i.p.) and D₂R eticlopride (0.1 mg/kg, i.p.), significantly reduced theacrine-stimulated activity indicating that this behavioral response, at least in part, is mediated by DA receptors. In order to investigate the brain region where theacrine may be acting, the drug (10 or 20 μg) was infused bilaterally into nucleus accumbens (NAc). Theacrine enhanced activity levels in a dose-dependent manner, implicating a role of the NAc in modulating theacrine's effects on locomotion. In addition, theacrine did not induce locomotor sensitization or tolerance after chronic exposure. Taken together, these findings demonstrate that theacrine significantly enhances activity; an effect which is mediated by both the adenosinergic and dopaminergic systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Addictive drugs can activate systems involved in normal reward-related learning, creating long-lasting memories of the drug's reinforcing effects and the environmental cues surrounding the experience. These memories significantly contribute to the maintenance of compulsive drug use as well as cue-induced relapse which can occur even after long periods of abstinence. Synaptic plasticity is thought to be a prominent molecular mechanism underlying drug-induced learning and memories. Ethanol and nicotine are both widely abused drugs that share a common molecular target in the brain, the neuronal nicotinic acetylcholine receptors (nAChRs). The nAChRs are ligand-gated ion channels that are vastly distributed throughout the brain and play a key role in synaptic neurotransmission. In this review, we will delineate the role of nAChRs in the development of ethanol and nicotine addiction. We will characterize both ethanol and nicotine's effects on nAChR-mediated synaptic transmission and plasticity in several key brain areas that are important for addiction. Finally, we will discuss some of the behavioral outcomes of drug-induced synaptic plasticity in animal models. An understanding of the molecular and cellular changes that occur following administration of ethanol and nicotine will lead to better therapeutic strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: The cornea has an important role in vision, is highly innervated and many neurotransmitter receptors are present, e.g., muscarine, melatonin, and dopamine receptors. γ-aminobutyric acid (GABA) is the most important inhibitory neurotransmitter in the retina and central nervous system, but it is unknown whether GABA receptors are present in cornea. The aim of this study was to determine if GABA receptors are located in chick cornea. Methods: Corneal tissues were collected from 25, 12-day-old chicks. Real time PCR, western blot, and immunohistochemistry were used to determine whether alpha1 GABAA, GABAB, and rho1 GABAC receptors were expressed and located in chick cornea. Results: Corneal tissue was positive for alpha1 GABAA and rho1 GABAC receptor mRNA (PCR) and protein (western blot) expression but was negative for GABAB receptor mRNA and protein. Alpha1 GABAA and rho1 GABAC receptor protein labeling was observed in the corneal epithelium using immunohistochemistry. Conclusions: These investigations clearly show that chick cornea possesses alpha1 GABAA, and rho1 GABAC receptors, but not GABAB receptors. The purpose of the alpha1 GABAA and rho1 GABAC receptors in cornea is a fascinating unexplored question.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Migraine is a debilitating neurovascular disorder, with a substantial genetic component. The exact cause of a migraine attack is unknown; however cortical hyperexcitability is thought to play a role. As Gamma-aminobutyric Acid (GABA) is the major inhibitory neurotransmitter in the brain, malfunctioning of this system may be a cause of the hyperexcitability. To date, there has been limited research examining the gene expression or genetics of GABA receptors in relation to migraine. The aim of our study was to determine if GABA receptors play a role in migraine by investigating their gene expression using profile in migraine affected individuals and non-affected controls by Q-PCR. Gene expression of GABA(A) receptor subunit isoforms (GABRA3, GABRB3, GABRQ) and GABA(B) receptor 2 (GABBR2) was quantified in mRNA obtained from peripheral blood leukocytes from 28 migraine subjects and 22 healthy control subjects. Analysis of results showed that two of the tested genes, GABRA3 and GABBR2, were significantly down regulated in migraineurs (P=0.018; P=0.017), compared to controls. Results from the other tested genes did not show significant gene expression variation. The results indicate that there may be specific GABA receptor gene expression variation in migraine, particularly involving the GABRA3 and GABBR2 genes. This study also identifies GABRA3 and GABBR2 as potential biomarkers to select migraineurs that may be more responsive to GABA agonists with future investigations in this area warranted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Migraine is a neurological disorder characterized by recurrent attacks of severe headache, affecting around 12% of Caucasian populations. It is well known that migraine has a strong genetic component, although the number and type of genes involved is still unclear. Prior linkage studies have reported mapping of a migraine gene to chromosome Xq 24–28, a region containing a cluster of genes for GABA A receptors (GABRE, GABRA3, GABRQ), which are potential candidate genes for migraine. The GABA neurotransmitter has been implicated in migraine pathophysiology previously; however its exact role has not yet been established, although GABA receptors agonists have been the target of therapeutic developments. The aim of the present research is to investigate the role of the potential candidate genes reported on chromosome Xq 24–28 region in migraine susceptibility. In this study, we have focused on the subunit GABA A receptors type ε (GABRE) and type θ (GABRQ) genes and their involvement in migraine. Methods We have performed an association analysis in a large population of case-controls (275 unrelated Caucasian migraineurs versus 275 controls) examining a set of 3 single nucleotide polymorphisms (SNPs) in the coding region (exons 3, 5 and 9) of the GABRE gene and also the I478F coding variant of the GABRQ gene. Results Our study did not show any association between the examined SNPs in our test population (P > 0.05). Conclusion Although these particular GABA receptor genes did not show positive association, further studies are necessary to consider the role of other GABA receptor genes in migraine susceptibility.