940 resultados para Oxides, Ruthenium, Tantalum, Fourier Transform Infrared Spectroscopy (FTIR)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research describes a rapid method for the determination of fatty acid (FA) contents in a micro-encapsulated fish-oil (μEFO) supplement by using attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopic technique and partial least square regression (PLSR) analysis. Using the ATR-FTIR technique, the μEFO powder samples can be directly analysed without any pre-treatment required, and our developed PLSR strategic approach based on the acquired spectral data led to production of a good linear calibration with R2 = 0.99. In addition, the subsequent predictions acquired from an independent validation set for the target FA compositions (i.e., total oil, total omega-3 fatty acids, EPA and DHA) were highly accurate when compared to the actual values obtained from standard GC-based technique, with plots between predicted versus actual values resulting in excellent linear fitting (R2 ⩾ 0.96) in all cases. The study therefore demonstrated not only the substantial advantage of the ATR-FTIR technique in terms of rapidness and cost effectiveness, but also its potential application as a rapid, potentially automated, online monitoring technique for the routine analysis of FA composition in industrial processes when used together with the multivariate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The time dependence of the concentration of CO2 in an electrochemical thin layer cavity is studied with Fourier transform infrared spectroscopy (FTIR) in order to evaluate the extent to which the thin layer cavity is diffusionally decoupled from the surrounding bulk electrolyte. For the model system of CO on Pt(111) in 0.1 M HClO4, it is found that the concentration of CO2, formed by electro-oxidation of CO, equilibrates rapidly with the surrounding bulk electrolyte. This rapid equilibration indicates that there is diffusion out of the thin layer, even on the short time scales of typical infrared experiments (1-3 min). However, since the measured CO2 absorbance intensity as a function of time is reproducible to within 10%, a new time-dependent method for surface coverage calibration using solution-phase species is proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Methods of assessment of compost maturity are needed so the application of composted materials to lands will provide optimal benefits. The aim of the present paper is to assess the maturity reached by composts from domestic solid wastes (DSW) prepared under periodic and permanent aeration systems and sampled at different composting time, by means of excitation-emission matrix (EEM) fluorescence spectroscopy and Fourier transform infrared spectroscopy (FT-IR). EEM spectra indicated the presence of two different fluorophores centered, respectively, at Ex/Em wavelength pairs of 330/425 and 280/330 nm. The fluorescence intensities of these peaks were also analyzed, showing trends related to the maturity of composts. The contour density of EEM maps appeared to be strongly reduced with composting days. After 30 and 45 days of composting, FT-IR spectra exhibited a decrease of intensity of peaks assigned to polysaccharides and in the aliphatic region. EEM and FT-IR techniques seem to produce spectra that correlate with the degree of maturity of the compost. Further refinement of these techniques should provide a relatively rapid method of assessing the suitability of the compost to land application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability of Raman spectroscopy and Fourier transform infrared (FT-IR) microscopy to discriminate between resins used for the manufacture of architectural finishes was examined in a study of 39 samples taken from a commercial resin library. Both Raman and FT-IR were able to discriminate between different types of resin and both split the samples into several groups (six for FT-IR, six for Raman), each of which gave similar, but not identical, spectra. In addition, three resins gave unique Raman spectra (four in FTIR). However, approximately half the library comprised samples that were sufficiently similar that they fell into a single large group, whether classified using FT-IR or Raman, although the remaining samples fell into much smaller groups. Further sub-division of the FT-IR groups was not possible because the experimental uncertainty was of similar magnitude to the within-group variation. In contrast, Raman spectroscopy was able to further discriminate between resins that fell within the same groups because the differences in the relative band intensities of the resins, although small, were larger than the experimental uncertainty.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sepsis is a life threatening condition resulting from a high burden of infection. It is a major health care problem and associated with inflammation, organ dysfunction and significant mortality. However, proper understanding and delineating the changes that occur during this complex condition remains a challenge. A comparative study involving intra-peritoneal injection of BALB/c mice with Salmonella Typhimurium (infection), lipopolysaccharide (endotoxic shock) or thioglycollate (sterile peritonitis) was performed. The changes in organs and sera were profiled using immunological assays and Fourier Transform Infrared (FTIR) micro-spectroscopy. There is a rapid rise in inflammatory cytokines accompanied with lowering of temperature, respiratory rate and glucose amounts in mice injected with S. Typhimurium or lipopolysaccharide. FTIR identifies distinct changes in liver and sera: decrease in glycogen and protein/lipid ratio and increase in DNA and cholesteryl esters. These changes were distinct from the pattern observed in mice treated with thioglycollate and the differences in the data obtained between the three models are discussed. The combination of FTIR spectroscopy and other biomarkers will be valuable in monitoring molecular changes during sepsis. GRAPHICS] Intra-peritoneal infection with high dose of Salmonella Typhimurium leads to rapid increase in inflammatory cytokines, e.g. Tnf alpha (A). FTIR analysis of liver (B) and sera (C) identifies several metabolic changes: glycogen, protein/lipid, cholesteryl esters and DNA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Detailed circular dichroism(CD) and Fourier transform infrared (FTIR) studies have been carried out to monitor thermal unfolding of horseradish peroxidase isoenzyme C(HRP) inhibited by CN(HRP-CN). The results suggest that HRP-CN is quite different from native HRP with different spin states of Fe of heme and different coordinated states. Cyanide becomes the sixth ligand of Fe(I) of heme and the hydrogen-binding network is destroyed partly at the same time, which cause the drastic decrease of thermal stability of HRP. The FTIR and Soret-CD spectra analysis demonstrate that during the heating process there is an intermediate state(I') which has both partly destroyed secondary and tertiary structures of native HRP, then it is the appearance of protein aggregation state(A) after fully unfolding. The unfolding pathway thus can be shown as follows: I -->I'-->U -->A.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

White household paints are commonly encountered as evidence in the forensic laboratory but they often cannot be readily distinguished by color alone so Fourier transform infrared (FT-IR) microscopy is used since it can sometimes discriminate between paints prepared with different organic resins. Here we report the first comparative study of FT-IR and Raman spectroscopy for forensic analysis of white paint. Both techniques allowed the 51 white paint samples in the study to be classified by inspection as either belonging to distinct groups or as unique samples. FT-IR gave five groups and four unique samples; Raman gave seven groups and six unique samples. The basis for this discrimination was the type of resin and/ or inorganic pigments/extenders present. Although this allowed approximately half of the white paints to be distinguished by inspection, the other half were all based on a similar resin and did not contain the distinctive modifiers/pigments and extenders that allowed the other samples to be identified. The experimental uncertainty in the relative band intensities measured using FT-IR was similar to the variation within this large group, so no further discrimination was possible. However, the variation in the Raman spectra was larger than the uncertainty, which allowed the large group to be divided into three subgroups and four distinct spectra, based on relative band intensities. The combination of increased discrimination and higher sample throughput means that the Raman method is superior to FT-IR for samples of this type. © 2005 Society for Applied Spectroscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Infrared spectra of thoformaldehyde, H2CS and D2CS, were observed in the gas phase at a resolution of better than 0.1 cm−1 from 4000 to 400 cm−1 using a Nicolet FTIR system. Vibrational band origins and rotational constants were determined for ν2, ν3, ν4, and ν6 of H2CS and for ν1, ν2, ν3, ν4, and ν6 of D2CS. The ν3, ν4, and ν6 bands of H2CS were analyzed as a set of three Coriolis interacting bands, and three Coriolis constants were determined; similarly the ν4 and ν6 bands of D2CS were analyzed as a pair of interacting bands and one Coriolis constant was determined. A general harmonic force field was determined, without constraints, to fit the vibrational wavenumbers, Coriolis constants, and centrifugal distortion constants. A zero-point (rz) structure was determined from the ground-state rotational constants, and the equilibrium (re) bond lengths were estimated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on the consistency of water vapour line intensities in selected spectral regions between 800–12,000 cm−1 under atmospheric conditions using sun-pointing Fourier transform infrared spectroscopy. Measurements were made across a number of days at both a low and high altitude field site, sampling a relatively moist and relatively dry atmosphere. Our data suggests that across most of the 800–12,000 cm−1 spectral region water vapour line intensities in recent spectral line databases are generally consistent with what was observed. However, we find that HITRAN-2008 water vapour line intensities are systematically lower by up to 20% in the 8000–9200 cm−1 spectral interval relative to other spectral regions. This discrepancy is essentially removed when two new linelists (UCL08, a compilation of linelists and ab-initio calculations, and one based on recent laboratory measurements by Oudot et al. (2010) [10] in the 8000–9200 cm−1 spectral region) are used. This strongly suggests that the H2O line strengths in the HITRAN-2008 database are indeed underestimated in this spectral region and in need of revision. The calculated global-mean clear-sky absorption of solar radiation is increased by about 0.3 W m−2 when using either the UCL08 or Oudot line parameters in the 8000–9200 cm−1 region, instead of HITRAN-2008. We also found that the effect of isotopic fractionation of HDO is evident in the 2500–2900 cm−1 region in the observations.