149 resultados para Osteopontin


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Ciência Animal - FMVA

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective In the last decades aroused the interest for bone tissue bank as an alternative to autogenous grafting, avoiding donor sites morbidity, surgical time, and costs reduction. The purpose of the study was to compare allografts (ALg) with autografts (AUg) using histology, immunochemistry, and tomographic analysis. Material and methods Fifty-six New Zealand White rabbits were submitted to surgical procedures. Twenty animals were donors and 36 were actually submitted to onlay grafting with ALg (experimental group) and AUg (control group) randomly placed bilaterally in the mandible. Six animals of each group were sacrificed at 3, 5, 7, 10, 20, and 60 postoperative days. Immunolabeling was accomplished with osteoprotegerin (OPG); receptor activator of nuclear factor-k ligand (RANKL); alkaline phosphatase (ALP); osteopontin (OPN); vascular endothelial growth factor (VEGF); tartrate-resistant acid phosphatase (TRAP); collagen type I (COL I); and osteocalcin (OC). Density and volume of the grafts was evaluated on tomography obtained at the surgery and sacrifice. Results The ALg and AUg exhibited similar patterns of density and volume throughout the experiments. The intra-group data showed statistical differences at days 7 and 60 in comparison with other time points (P = 0.001), in both groups. A slight graft expansion from fixation until day 20 (P = 0.532) was observed in the AUg group and then resorbed significantly at the day 60 (P = 0.015). ALg volume remained stable until day 7 and decreased at day 10 (P = 0.045). The light microscopy analysis showed more efficient incorporation of AUg onto the recipient bed if compared with the ALg group. The immunohistochemical labeling picked: at days 10 and 20 with OPG in the AUg group and at day 7 with TRAP in the ALg group (P = 0.001 and P = 0.002, respectively). Conclusions ALg and AUg were not differing in patterns of volume and density during entire experiment. Histological data exhibit more efficient AUg incorporation into recipient bed compared with the ALg group. Immunohistochemistry outcomes demonstrated similar pattern for both ALg and AUg groups, except for an increasing resorption activity in the ALg group mediated by TRAP and in the AUg group by higher OPG labeling. However, this latter observation does not seem to influence clinical outcomes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Odontologia - FOA

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A scheme is presented in which an organic solvent environment in combination with surfactants is used to confine a natively unfolded protein inside an inverse microemulsion droplet. This type of confinement allows a study that provides unique insight into the dynamic structure of an unfolded, flexible protein which is still solvated and thus under near-physiological conditions. In a model system, the protein osteopontin (OPN) is used. It is a highly phosphorylated glycoprotein that is expressed in a wide range of cells and tissues for which limited structural analysis exists due to the high degree of flexibility and large number of post-translational modifications. OPN is implicated in tissue functions, such as inflammation and mineralisation. It also has a key function in tumour metastasis and progression. Circular dichroism measurements show that confinement enhances the secondary structural features of the protein. Small-angle X-ray scattering and dynamic light scattering show that OPN changes from being a flexible protein in aqueous solution to adopting a less flexible and more compact structure inside the microemulsion droplets. This novel approach for confining proteins while they are still hydrated may aid in studying the structure of a wide range of natively unfolded proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: This study has evaluated the effect of antimicrobial photodynamic therapy (aPDT) used in conjunction with non-surgical and surgical periodontal treatment (PT) in modulating gene expression during periodontal wound healing. Methods: Fifteen patients with chronic periodontitis, presenting bilaterally lower molars with class III furcation lesions and scheduled for extraction, were selected. In initial therapy, scaling and root planing (SRP) was performed in the Control Group (CG), while SRP + aPDT were performed in the Test Group (TG). 45 days later, flap surgery plus SRP, and flap surgery plus SRP + aPDT were performed in the CG and TG, respectively. At 21 days post-surgery, the newly formed granulation tissue was collected, and Real-time PCR evaluated the expression of the genes: tumor necrosis factor-?, interleukin-1?, interleukin-4, interleukin-10, matrix metalloproteinase-2 (MMP-2), tissue inhibitor of metalloproteinase-2 (TIMP-2), osteoprotegerin (OPG), receptor activator of nuclear factor- ?B ligand (RANKL), type I collagen, alkaline phosphatase, osteopontin, osteocalcin, and bone sialoprotein. Results: There were statistically significant differences between the groups in relation to mRNA levels for MMP-2 (TG = 3.26 ± 0.89; CG = 4.23 ± 0.97; p = 0.01), TIMP-2/MMP-2 ratio (TG = 0.91 ± 0.34; CG = 0.73 ± 0.32; p = 0.04), OPG (TG = 0.84 ± 0.45; CG = 0.30 ± 0.26; p = 0.001), and OPG/RANKL ratio (TG = 0.60 ± 0.86; CG = 0.23 ± 0.16; p = 0.04), favoring the TG. Conclusion: The present data suggest that the aPDT associated to nonsurgical and surgical periodontal therapy may modulate the extracellular matrix and bone remodeling by up regulating the TIMP- 2/MMP-2 and OPG/RANKL mRNA ratio, but the clinical relevance needs to be evaluated in further studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Background Extracellular matrix proteins are key factors that influence the regenerative capacity of tissues. The objective of the present study was to evaluate the effects of enamel matrix derivative (EMD), TGF-β1, and the combination of both factors (EMD+TGF-β1) on human osteoblastic cell cultures. Methods Cells were obtained from alveolar bone of three adult patients using enzymatic digestion. Effects of EMD, TGF-β1, or a combination of both were analyzed on cell proliferation, bone sialoprotein (BSP), osteopontin (OPN) and alkaline phosphatase (ALP) immunodetection, total protein synthesis, ALP activity and bone-like nodule formation. Results All treatments significantly increased cell proliferation compared to the control group at 24 h and 4 days. At day 7, EMD group showed higher cell proliferation compared to TGF-β1, EMD + TGF-β1 and the control group. OPN was detected in the majority of the cells for all groups, whereas fluorescence intensities for ALP labeling were greater in the control than in treated groups; BSP was not detected in all groups. All treatments decreased ALP levels at 7 and 14 days and bone-like nodule formation at 21 days compared to the control group. Conclusions The exposure of human osteoblastic cells to EMD, TGF-β1 and the combination of factors in vitro supports the development of a less differentiated phenotype, with enhanced proliferative activity and total cell number, and reduced ALP activity levels and matrix mineralization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to evaluate the odontogenic potential of undifferentiated pulp cells (OD-21 cell line) through chemical stimuli in vitro. Cells were divided into uninduced cells (OD-21), induced cells (OD-21 cultured in supplemented medium/OD-21+OM) and odontoblast-like cells (MDPC-23 cell line). After 3, 7, 10 and 14 days of culture, it was evaluated: proliferation and cell viability, alkaline phosphatase activity, total protein content, mineralization, immunolocalization of dentin matrix acidic phosphoprotein 1 (DMP1), alkaline phosphatase (ALP) and osteopontin (OPN) and quantification of genes ALP, OSTERIX (Osx), DMP1 and runt-related transcription factor 2 (RUNX2) through real-time polymerase chain reaction (PCR). Data were analyzed by Kruskal-Wallis and Mann-Whitney U tests (p<0.05). There was a decrease in cell proliferation in OD-21 + OM, whereas cell viability was similar in all groups, except at 7 days. The amount of total protein was higher in group OD-21 + OM in all periods; the same occurred with ALP activity after 10 days when compared with OD-21, with no significant differences from the MDPC-23 group. Mineralization was higher in OD-21+OM when compared with the negative control. Immunolocalization demonstrated that DMP1 and ALP were highly expressed in MDPC-23 cells and OD-21 + OM cells, whereas OPN was high in all groups. Real-time PCR revealed that DMP1 and ALP expression was higher in MDPC-23 cell cultures, whereas RUNX2 was lower for these cells and higher for OD-21 negative control. Osx expression was lower for OD-21 + OM. These results suggest that OD-21 undifferentiated pulp cells have odontogenic potential and could be used in dental tissue engineering.