979 resultados para Organic synthesis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is an innovative study for organic synthesis using supported gold nanoparticles as photocatalysts under visible light irradiation. It especially examines a novel green process for efficient hydroamination of alkynes with amines. The investigation of other traditional reduction and oxidation reactions also adds significantly to the knowledge of gold nanoparticles and titania nanofibres as photocatalysts for organic synthesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The body of the thesis contained two separate elements which made an original contribution to fundamental understanding in the areas of photocatalysis, chemical synthesis and water treatment. Research on chemical reactions catalyzed by noble metal nanoparticles (such as gold) or surface complex grafted metal oxides which can be driven by sunlight at ambient temperature and the second element on radioactive cesium (137Cs+) cations and iodine (125I-) anions recovery by the unique structural features of titanate nanostructures for firmly capture and safe storage; the works has been all published in journals that are rated at the top of their respective fields.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anatase TiO2 nanocrystals were painted on H-titanate nanofibers by using an aqueous solution of titanyl sulfate. The anatase nanocrystals were bonded solidly onto the titanate fibers through formation of coherent interfaces at which the oxygen atoms were shared by the nanocrystals and the fiber. This approach allowed us to create large anatase surfaces on the nanofibers, which are active in photocatalytic reactions. This method was also applied successfully to coat anatase nanocrystals on surfaces of fly ash and layered clay. The painted nanofibers exhibited a much higher catalytic activity for the photocatalytic degradation of sulforhodamine B and the selective oxidation of benzylamine to the corresponding imine (with a product selectivity >99%) under UV irradiation than both the parent H-titanate nanofibers and a commercial TiO2 powder, P25. We found that gold nanoparticles supported on H-titanate nanofibers showed no catalytic activity for the reduction of nitrobenzene to azoxybenzene, whereas the gold nanoparticles supported on the painted nanofibers and P25 could efficiently reduce nitrobenzene to azoxybenzene as the sole product under visible light irradiation. These results were different from those from the reduction on the gold nanoparticles photocatalyst on ZrO2, in which the azoxybenzene was the intermediate and converted to azobenzene quickly. Evidently, the support materials significantly affect the product selectivity of the nitrobenzene reduction. Finally, the new photocatalysts could be easily dispersed into and separated from a liquid because of their fibril morphology, which is an important advantage for practical applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent advances in direct-use plasmonic-metal nanoparticles (NPs) as photocatalysts to drive organic synthesis reactions under visible-light irradiation have attracted great interest. Plasmonic-metal NPs are characterized by their strong interaction with visible light through excitation of the localized surface plasmon resonance (LSPR). Herein, we review recent developments in direct photocatalysis using plasmonic-metal NPs and their applications. We focus on the role played by the LSPR of the metal NPs in catalyzing organic transformations and, more broadly, the role that light irradiation plays in catalyzing the reactions. Through this, the reaction mechanisms that these light-excited energetic electrons promote will be highlighted. This review will be of particular interest to researchers who are designing and fabricating new plasmonic-metal NP photocatalysts by identifying important reaction mechanisms that occur through light irradiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Development of new methods, leading to the first stereo-specific total synthesis of a steroid,viz equilenin, and of estrone and their derivatives and of several important synthones, useful for the preparation of physiologically active steroids, and the first conversion of an equilenane to estrane have been described. An account of the achievement of original syntheses of testosterone and its isomers and derivatives and degradation products, urinary steroids, terpenes and their important degradation products has been given. Mechanisms of Dieckmann cyclization, a novel dehydrogenation-addition reaction involving abietic acid and tetrachloro-o-benzoquinone, a rearrangement involving a substitution of cyclopentanone-2-carboxylic ester have been elucidated. An abnormaluv absorption exhibited by saturated 1,2-dicyano esters has been rationalized. Divergences in theord data of testosterone and 19-nortesto-sterone from their isomers have been explained by x-ray crystallographic studies of 8-isotestosterone, 8-iso-10-isotestosterone and 8-iso-10-iso-19-nortestosterone. A tentative explanation for the difference in their physiological activities has been suggested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of ionic liquids in chemical research has gained considerable interest and activity in recent years. Due to their unique and varied physicochemical properties, in comparison to molecular solvents, the potential applications for ionic liquids are enormous. The use of microwave irradiation, as a powerful dielectric heating technique, in synthetic organic chemistry has been known since 1986. Since then, it has gained significant recognition for its research and application in both academia and industry. The use of either ionic liquids or microwave irradiation in synthetic organic chemistry has been known to afford improved, alternative or complimentary selectivities, in comparison to traditional processes. In this study, the use of ionic liquids as solvents, co-solvents and catalytic media was explored in Friedel-Crafts, deuterolabelling and O-demethylation reactions. Alternative methods for the production of a variety of aromatic ketones using the Friedel-Crafts acylation methodology were investigated using ionic liquid catalyst or ionic liquid acidic additive systems. The disclosed methods, i.e. metal bistriflamides and chloroindate ionic liquids systems, possessed good catalytic activity in the synthesis of typical benzophenones. These catalytic systems were also recyclable. Microwave irradiation was found to be useful in the synthesis of various polyhydroxydeoxybenzoins and arylpropanones as synthetic precursors to naturally occurring or potentially bioactive compounds. Under optimized condition, the reaction occurred in only four minutes using systems such as [bmim][NTf2]/HNTf2 and [bmim][BF4]/BF3·OEt2. Naturally occurring polyphenols, such as isoflavones, can possess various types of biological or pharmacological activity. In particular, some are noted for their beneficial effects on human health. Isotopically labelled analogues of polyphenols are valuable as analytical standards in the quantification of these compounds from biological matrices. A new strategy for deuterolabelling of polyphenols was developed using ionic liquids as co-solvents and 35% DCl/D2O, as a cheap deuterium source, under microwave irradiation. Under these conditions, perdeuterated compounds were achieved in short reaction times, in high isotopic purity and in excellent yields. An O-demethylation reaction was developed, using an ionic liquid reaction medium with BBr3 for the deprotection of a variety methyl protected polyphenolic compounds, such as isoflavons and lignans. This deprotection procedure was found to be very practical as the reaction occurred under mild reaction conditions and in short reaction times. The isolation and purification steps were particularly straightforward and high yielding, in comparison to traditional methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metal nanoparticle photocatalysts have attracted recent interest due to their strong absorption of visible and ultraviolet light. The energy absorbed by the metal conduction electrons and the intense electric fields in close proximity, created by the localized surface plasmon resonance effect, makes the crucial contribution of activating the molecules on the metal nanoparticles which facilitates chemical transformation. There are now many examples of successful reactions catalyzed by supported nanoparticles of pure metals and of metal alloys driven by light at ambient or moderate temperatures. These examples demonstrate these materials are a novel group of efficient photocatalysts for converting solar energy to chemical energy and that the mechanisms are distinct from those of semiconductor photocatalysts. We present here an overview of recent research on direct photocatalysis of supported metal nanoparticles for organic synthesis under light irradiation and discuss the significant reaction mechanisms that occur through light irradiation.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bioconversion of acyclic isoprenoids using a strain of Aspergillus niger results in hydroxylated metabolites with regio- and stereoselectivity. The organism carries out oxidation of the terminal allylic methyl group and the remote double bond in all the compounds tested (I-VII). However, these two activities seem to have preferential structural requirements. When an acyclic isoprenoid with a ketone functionality such as geranylacetone is used as the substrate, the organism also carries out the asymmetric reduction of the keto group. All the metabolites formed have been purified and characterized by conventional spectroscopic methods and quantification has been made by gas chromatographic analyses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The utility of tetrathiomolybdate in a variety of organic transformations is presented in this account. The sulfur transfer ability of tetrathiomolybdate is exploited in the synthesis of organic disulfides under mild reaction conditions. The induced internal redox reactions associated with tetrathiomolybdate have been thoroughly exploited in developing various methodologies, which include the reduction of organic azides, synthesis of diselenides, cyclic imines, thioamides, and thiolactams. In addition, novel deprotection strategies using tetrathiomolybdate have been developed to cleave the propargyl and propargyloxy carbonyl (POC) protecting groups. Tetrathiomolybdate mediated tandem sulfur transfer-reduction-Michael reactions have been applied to the synthesis of sulfur containing bicyclic systems. Furthermore, the reactions in the solid state and the reactions in water medium assisted by tetrathiomolybdate have greatly simplified the synthesis of organic disulfides.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The usefulness of dioxomolybdenum reagents in oxo-transfer reactions have been reviewed. The redox ability of dioxomolybdenum reagent has been utilized in designing several synthetic methods, which are useful in organic synthesis. Several reactions such as oxidation of alcohols, sulfides, amines, azides olefins etc are accomplished by using dioxomolybdenum reagents. Similarly, it is also demonstrated that dioxomolybdenum complex is useful in performing reduction of aldehydes, ketones, esters, azides etc. A fine tuning of reaction conditions provides suitable conditions to perform either oxidation or reduction by using catalytic amount of reagents. The oxidation reactions are further simplified by employing the polymer supported molybdenum reagents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organoselenium compounds have attracted intense research owing to their unique biological properties as well as pharmaceutical significance. Progress has been made in developing reagents for incorporation of selenium in an efficient and controlled manner. Herein, we present a review on the recently developed selenium reagent, tetraethylammonium tetraselenotungstate, Et4N](2)WSe4 as a versatile selenium transfer reagent in organic synthesis. Tetraselenotungstate has been successfully used for the synthesis of a number of functionalized diselenides, sugar- and nucleoside-derived diselenides, seleno-cystines, selenohomocystines, selenoamides, selenoureas and sugar- and nucleoside-based cyclic-selenide derivatives. Additionally, this reagent has been employed for the ring opening of aziridines to synthesize a variety of beta-aminodiselenides. A new selena-aza-Payne type rearrangement of aziridinemethanoltosylates mediated by tetraselenotungstate for the synthesis of allyl amines is also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN] The purpose of this review article is to illustrate synthetic aspects of functionalized phosphorus derivatives containing an oximo moiety at the beta-position. First section will be focused on the synthesis of phosphine oxides, phosphonates or phosphonium salts containing an oxime group. The synthesis of these derivatives comprises the carbon–phosphorus single bond construction by reaction of haloximes with phosphorus derivatives, nucleophilic addition of phosphorus reagents to carbonyl compounds, or nucleophilic addition of phosphorus reagents to nitro olefins. This section will also concentrate on the most practical routes for the synthesis of the target compounds, through carbon–nitrogen double bond formation, which are as follows: condensation processes of carbonyl compounds and hydroxylamine derivatives or addition of hydroxylamines to allenes or alkynes. The preparative use of beta-oximo phosphorus derivatives as synthetic intermediates will be discussed in a second section, comprising olefination reaction, oxidation of oximes to nitrile oxides by reaction at the C-N double bond of the oxime moiety, oxidation of these substrates to nitrosoalkenes, reduction to the corresponding hydroxylamines and some reactions at the hydroxyl group of the hydroxyimino moiety.