56 resultados para Olpidium brassicae


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lettuce big vein associated virus (LBVaV) and Mirafiori lettuce big vein virus (MLBVV) have been found in mixed infection in Brazil causing the lettuce big vein disease. Analysis of part of the coat protein (CP) gene of Brazilian isolates of LBVaV collected from lettuce, showed at least 93% amino acid sequence identity with other LBVaV isolates. Genetic diversity among MLBVV CP sequences was higher when compared to LBVaV CP sequences, with amino acid sequence identity ranging between 91% to 100%. Brazilian isolates of MLBVV belong to subgroup A, with one RsaI restriction site on the coat protein gene. There is no indication for a possible geografical origin for the Brazilian isolates of LBVaV and MLBVV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The feeding of neonate larvae of Pieris brassicae (Order Lepidoptera) on leaves of brassica plants that had been colonised by Bacillus thuringiensis resulted in the death of 35% of the population within 72 h. The bacteria Multiplied in the cadavers, resulting in an increase of about 50-fold compared to the living insects. Surviving insects showed no ill effects during the time of the study. There was negligible multiplication of B. thuringiensis in the frass. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seedlings of clover (Triflorium hybridum) were colonized by Bacillus thuringiensis when spores and seeds were co-inoculated into soil. Both a strain isolated in the vegetative form from the phylloplane of clover, 2810-S-4, and a laboratory strain, HD-1, were able to colonize clover to a density of about 1000 CFU/g leaf when seeds were sown in sterile soil and to a density of about 300 CFU/g leaf in nonsterile soil. A strain lacking the characteristic insecticidal crystal proteins produced a similar level of colonization over a 5-week period as the wild type strain, indicating that crystal production was not a mitigating factor during colonization. A small plasmid, pBC16, was transferred between strains of B. thuringiensis when donor and recipient strains were sprayed in vegetative form onto leaves of clover and pak choi (Brassica campestris var. chinensis). The rate of transfer was about 0.1 transconjugants/recipient and was dependent on the plant species. The levels of B. thuringiensis that naturally colonized leaves of pak choi produced negligible levels of mortality in third instar larvae of Pieris brassicae feeding on the plants. Considerable multiplication occurred in the excreted frass but not in the guts of living insects. Spores in the frass could be a source of recolonization from the soil and be transferred to other plants. These findings illustrate a possible cycle, not dependent on insect pathology, by which B. thuringiensis diversifies and maintains itself in nature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The significance of Plasmodiophora brassicae Woronin and clubroot disease which it incites in members of the family Brassicaceae is reviewed as the focus for this special edition of the Journal of Plant Growth Regulation. This is a monographic treatment of recent research into the pathogen and disease; previous similar treatments are now well over half a century old. Vernacular nomenclature of the disease indicates that it had a well-established importance in agriculture and horticulture from at least the Middle Ages onward in Europe and probably earlier. Subsequently, the pathogen probably spread worldwide as a result of transfer on and in fodder taken by colonists as livestock feed. It is a moot point, however, whether there was much earlier spread by P. brassicae into China and subsequently Japan as Brassica rapa (Chinese cabbage and many variants) colonized those lands in archaeological time. Symptoms, worldwide distribution, and economic impact are briefly described here to provide a basis for understanding subsequent papers. Clubroot disease devastates both infected field and protected vegetable and agricultural Brassica crops. Particular importance is placed on recent reports of crop losses in tropical countries, albeit where the crops are grown in cooler altitudes, and in the Canadian prairie land canola crops. The latter is of enormous importance because this crop is the single most important and essential source of vegetable oils used in human foodstuffs and in industrial lubricants where mineral oils are inappropriate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasmodiophora brassicae Wor. is viewed in this article from the standpoint of a highly evolved and successful organism, well fitted for the ecological niche that it occupies. Physical, chemical, and biological components of the soil environment are discussed in relation to their effects on the survival, growth, and reproduction of this microbe. It is evident that P. brassicae is well equipped by virtue of its robust resting spores for survival through many seasonal cycles. Germination is probably triggered as a result of signals initiated by root exudates. The resultant motile zoospore moves rapidly to the root hair surface and penetration and colonization follow. The short period between germination and penetration is one of greatest vulnerability for P. brassicae. In this phase survival is affected at the very least by soil texture and structure; its moisture; pH; calcium, boron, and nitrogen content; and the presence of active microbial antagonists. These factors influence the inoculum potential (sensu Garrett, 1956) and its viability and invasive capacity. There is evidence that these effects may also influence differentially the survival of some physiologic races of P. brassicae. Considering the interaction of P. brassicae with the soil environment from the perspective of its biological fitness is an unusual approach; most authors consider only the opportunities to destroy this organism. The approach adopted here is borne of several decades spent studying P. brassicae and the respect that has been engendered for it as a biological entity. This review stops at the point of penetration, although some of the implications of the environment for successful colonization are included because they form a continuum. Interactions with the molecular and biochemical cellular environment are considered in other sections in this special edition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Methyl benzimidazole carbamate (MBC) fungicides are used to control the oilseed rape pathogen Pyrenopeziza brassicae. Resistance to MBCs has been reported in P. brassicae, but the molecular mechanism(s) associated with reductions in sensitivity have not been verified in this species. Elucidation of the genetic changes responsible for resistance, hypothesised to be target-site mutations in β-tubulin, will enable resistance diagnostics and thereby inform resistance management strategies. RESULTS P. brassicae isolates were classified as sensitive, moderately resistant or resistant to MBCs. Crossing P. brassicae isolates of different MBC sensitivities indicated that resistance was conferred by a single gene. The MBC-target encoding gene β-tubulin was cloned and sequenced. Reduced MBC sensitivity of field isolates correlated with β-tubulin amino acid substitutions L240F and E198A. The highest level of MBC resistance was measured for isolates carrying E198A. Negative cross-resistance between MBCs and the fungicides diethofencarb and zoxamide was only measured in E198A isolates. PCR-RFLP was used to screen isolates for the presence of L240F and E198A. The substitutions E198G and F200Y were also detected in DNA samples from P. brassicae populations after cloning and sequencing of PCR products. The frequencies of L240F and E198A in different P. brassicae populations were quantified by pyrosequencing. There were no differences in the frequencies of these alleles between P. brassicae populations sampled from different locations or after fungicide treatment regimes. CONCLUSIONS The molecular mechanisms affecting sensitivity to MBCs in P. brassicae have been identified. Pyrosequencing assays are a powerful tool for quantifying fungicide-resistant alleles in pathogen populations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The incidence and severity of light leaf spot epidemics caused by the ascomycete fungus Pyrenopeziza brassicae on UK oilseed rape crops is increasing. The disease is currently controlled by a combination of host resistance, cultural practices and fungicide applications. We report decreases in sensitivities of modern UK P. brassicae isolates to the azole (imidazole and triazole) class of fungicides. By cloning and sequencing the P. brassicae CYP51 (PbCYP51) gene, encoding the azole target sterol 14α-demethylase, we identified two non-synonymous mutations encoding substitutions G460S and S508T associated with reduced azole sensitivity. We confirmed the impact of the encoded PbCYP51 changes on azole sensitivity and protein activity by heterologous expression in a Saccharomyces cerevisiae mutant YUG37::erg11 carrying a controllable promoter of native CYP51 expression. In addition, we identified insertions in the predicted regulatory regions of PbCYP51 in isolates with reduced azole sensitivity. The presence of these insertions was associated with enhanced transcription of PbCYP51 in response to sub-inhibitory concentrations of the azole fungicide tebuconazole. Genetic analysis of in vitro crosses of sensitive and resistant isolates confirmed the impact of PbCYP51 alterations in coding and regulatory sequences on a reduced sensitivity phenotype, as well as identifying a second major gene at another locus contributing to resistance in some isolates. The least sensitive field isolates carry combinations of upstream insertions and non-synonymous mutations, suggesting PbCYP51 evolution is on-going and the progressive decline in azole sensitivity of UK P. brassicae populations will continue. The implications for the future control of light leaf spot are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Premature germination of resting spores as a means of protecting brassica crops from Plasmodiphora brassicae Wor., (Clubroot). Crop Protection. Clubroot disease causes substantial yield and quality losses in broadacre oil seed and intensive vegetable brassica crops worldwide. The causal microbe Plasmodiophora brassicae Wor., perennates as soil-borne dormant resting spores. Their germination is triggered by exudates from host roots. A valuable addition to sustainable integrated control strategies could be developed by identifying and synthesising the molecules responsible for stimulating resting spore germination. This paper reports experiments in which stimulatory exudates were collected from brassica roots following exposure to infective stages of P. brassicae. Analyses identified a germination signalling molecule of circa 1 kDa formed of glucose sub-units. Mass spectral analyses showed this to be a complex hexasaccharide carbohydrate with structural similarities to the components of plant cell walls. This is the first report of a host generated hexasaccharide which is capable of stimulating the germination of resting spores of P. brassicae. The implications for environmentally benign control of clubroot are discussed briefly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clubroot disease and the causal microbe Plasmodiophora brassicae offer abundant challenges to agriculturists and biological scientists. This microbe is well fitted for the environments which it inhabits. Plasmodiophora brassicae exists in soil as microscopic well protected resting spores and then grows actively and reproduces while shielded inside the roots of host plants. The pathogen is active outside the host for only short periods. Consequently, scientific studies are made challenging by the biological context of the host and pathogen and the technology required to investigate and understand that relationship. Controlling clubroot disease is a challenge for farmers, crop consultants and plant pathology practitioners because of the limited options which are available. Full symptom expression happens solely in members of the Brassicaceae family. Currently, only a few genes expressing strong resistance to P. brassicae are known and readily available. Agrochemical control is similarly limited by difficulties in molecule formulation which combines efficacy with environmental acceptability. Manipulation of husbandry encouraging improvements in soil structure, texture, nutrient composition and moisture content can reduce populations of P. brassicae. Integrating such strategies with rotation and crop management will reduce but not eliminate this disease. There are indications that forms of biological competition may be mobilised as additions to integrated control strategies. The aim of this review is to chart key themes in the development of scientific biological understanding of this host-pathogen relationship by offering signposts to grapple with clubroot disease which devastates crops and their profitability. Particular attention is given to the link between soil and nutrient chemistry and activity of this microbe.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O conhecimento da dinâmica populacional e da distribuição vertical de insetos pragas em plantas hospedeiras é fundamental para o desenvolvimento de programas de manejo integrado de pragas. No presente trabalho efetuou-se um levantamento populacional de formas ápteras do pulgão Brevicoryne brassicae (L.), visando determinar a época de maior densidade populacional e a distribuição vertical em plantas de couve, (Brassica oleracea L. var. acephala DC.), cultivadas em Jaboticabal, SP. O estudo foi realizado durante as safras de brássicas de 1998 e 1999, efetuando-se correção da acidez do solo por meio de aplicação de calcário apenas no campo utilizado em 1998. A amostragem dos pulgões foi feita visualmente em folhas classificadas em três categorias: apical, mediana e basal. Nas duas safras estudadas, a infestação de B. brassicae na couve atingiu a maior densidade populacional em setembro, diminuindo rapidamente a seguir. Nos dois campos não se observou a mesma distribuição de B. brassicae em folhas apicais, medianas e basais. Os fatores que podem ter contribuído para as diferenças observadas no padrão de distribuição do pulgão devem estar relacionados com a precipitação pluvial e o calcário magnesiano.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neste estudo, visou-se avaliar o impacto de inimigos naturais e de fatores meteorológicos na população do pulgão Brevicoryne brassicae (L.), na cultura da couve, usando-se correlação simples e análise de regressão múltipla com seleção de variáveis pelo método stepwise. A amostragem de B. brassicae foi realizada por procura visual e dos inimigos naturais através de armadilhas de sucção e de solo. Formas ápteras de B. brassicae começaram a infestar a couve em julho, atingindo pico populacional em setembro. Os fatores que apresentaram correlação significativa com a população de B. brassicae, no período que abrangeu todo o levantamento populacional, foram Diaeretiella rapae (Mc'Intosh), aranhas presentes no solo, precipitação pluviométrica e umidade relativa, sugerindo que tais fatores tiveram função importante na mortalidade do pulgão. No período de maior crescimento e declínio populacional de B. brassicae, aranhas presentes no solo mostraram-se como o fator de mortalidade mais significativo relacionado com a variação da densidade populacional do pulgão.