987 resultados para Oligonucleotide Array Sequence Analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transforming growth factor beta (TGF-beta) and platelet-derived growth factor A (PDGFAlpha) play a central role in tissue morphogenesis and repair, but their interplay remain poorly understood. The nuclear factor I C (NFI-C) transcription factor has been implicated in TGF-beta signaling, extracellular matrix deposition, and skin appendage pathologies, but a potential role in skin morphogenesis or healing had not been assessed. To evaluate this possibility, we performed a global gene expression analysis in NFI-C(-/-) and wild-type embryonic primary murine fibroblasts. This indicated that NFI-C acts mostly to repress gene expression in response to TGF-beta1. Misregulated genes were prominently overrepresented by regulators of connective tissue inflammation and repair. In vivo skin healing revealed a faster inflammatory stage and wound closure in NFI-C(-/-) mice. Expression of PDGFA and PDGF-receptor alpha were increased in wounds of NFI-C(-/-) mice, explaining the early recruitment of macrophages and fibroblasts. Differentiation of fibroblasts to contractile myofibroblasts was also elevated, providing a rationale for faster wound closure. Taken together with the role of TGF-beta in myofibroblast differentiation, our results imply a central role of NFI-C in the interplay of the two signaling pathways and in regulation of the progression of tissue regeneration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report 24 unrelated individuals with deletions and 17 additional cases with duplications at 10q11.21q21.1 identified by chromosomal microarray analysis. The rearrangements range in size from 0.3 to 12 Mb. Nineteen of the deletions and eight duplications are flanked by large, directly oriented segmental duplications of >98% sequence identity, suggesting that nonallelic homologous recombination (NAHR) caused these genomic rearrangements. Nine individuals with deletions and five with duplications have additional copy number changes. Detailed clinical evaluation of 20 patients with deletions revealed variable clinical features, with developmental delay (DD) and/or intellectual disability (ID) as the only features common to a majority of individuals. We suggest that some of the other features present in more than one patient with deletion, including hypotonia, sleep apnea, chronic constipation, gastroesophageal and vesicoureteral refluxes, epilepsy, ataxia, dysphagia, nystagmus, and ptosis may result from deletion of the CHAT gene, encoding choline acetyltransferase, and the SLC18A3 gene, mapping in the first intron of CHAT and encoding vesicular acetylcholine transporter. The phenotypic diversity and presence of the deletion in apparently normal carrier parents suggest that subjects carrying 10q11.21q11.23 deletions may exhibit variable phenotypic expressivity and incomplete penetrance influenced by additional genetic and nongenetic modifiers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inorganic phosphate (Pi) is one of the most limiting nutrients for plant growth in both natural and agricultural contexts. Pi-deficiency leads to a strong decrease in shoot growth, and triggers extensive changes at the developmental, biochemical and gene expression levels that are presumably aimed at improving the acquisition of this nutrient and sustaining growth. The Arabidopsis thaliana PHO1 gene has previously been shown to participate in the transport of Pi from roots to shoots, and the null pho1 mutant has all the hallmarks associated with shoot Pi deficiency. We show here that A. thaliana plants with a reduced expression of PHO1 in roots have shoot growth similar to Pi-sufficient plants, despite leaves being strongly Pi deficient. Furthermore, the gene expression profile normally triggered by Pi deficiency is suppressed in plants with low PHO1 expression. At comparable levels of shoot Pi supply, the wild type reduces shoot growth but maintains adequate shoot vacuolar Pi content, whereas the PHO1 underexpressor maintains maximal growth with strongly depleted Pi reserves. Expression of the Oryza sativa (rice) PHO1 ortholog in the pho1 null mutant also leads to plants that maintain normal growth and suppression of the Pi-deficiency response, despite the low shoot Pi. These data show that it is possible to unlink low shoot Pi content with the responses normally associated with Pi deficiency through the modulation of PHO1 expression or activity. These data also show that reduced shoot growth is not a direct consequence of Pi deficiency, but is more likely to be a result of extensive gene expression reprogramming triggered by Pi deficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PPARs (peroxisome-proliferator-activated receptors) alpha, beta/delta and gamma are a group of transcription factors that are involved in numerous processes, including lipid metabolism and adipogenesis. By comparing liver mRNAs of wild-type and PPARalpha-null mice using microarrays, a novel putative target gene of PPARalpha, G0S2 (G0/G1 switch gene 2), was identified. Hepatic expression of G0S2 was up-regulated by fasting and by the PPARalpha agonist Wy14643 in a PPARalpha-dependent manner. Surprisingly, the G0S2 mRNA level was highest in brown and white adipose tissue and was greatly up-regulated during mouse 3T3-L1 and human SGBS (Simpson-Golabi-Behmel syndrome) adipogenesis. Transactivation, gel shift and chromatin immunoprecipitation assays indicated that G0S2 is a direct PPARgamma and probable PPARalpha target gene with a functional PPRE (PPAR-responsive element) in its promoter. Up-regulation of G0S2 mRNA seemed to be specific for adipogenesis, and was not observed during osteogenesis or myogenesis. In 3T3-L1 fibroblasts, expression of G0S2 was associated with growth arrest, which is required for 3T3-L1 adipogenesis. Together, these data indicate that G0S2 is a novel target gene of PPARs that may be involved in adipocyte differentiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pattern of global gene expression in Salmonella enterica serovar Typhimurium bacteria harvested from the chicken intestinal lumen (cecum) was compared with that of a late-log-phase LB broth culture using a whole-genome microarray. Levels of transcription, translation, and cell division in vivo were lower than those in vitro. S. Typhimurium appeared to be using carbon sources, such as propionate, 1,2-propanediol, and ethanolamine, in addition to melibiose and ascorbate, the latter possibly transformed to D-xylulose. Amino acid starvation appeared to be a factor during colonization. Bacteria in the lumen were non- or weakly motile and nonchemotactic but showed upregulation of a number of fimbrial and Salmonella pathogenicity island 3 (SPI-3) and 5 genes, suggesting a close physical association with the host during colonization. S. Typhimurium bacteria harvested from the cecal mucosa showed an expression profile similar to that of bacteria from the intestinal lumen, except that levels of transcription, translation, and cell division were higher and glucose may also have been used as a carbon source. © 2011, American Society for Microbiology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mucus secretion is an important protective mechanism for the luminal lining of open tubular organs, but mucin overproduction in the respiratory tract can exacerbate the inflammatory process and cause airway obstruction. Production of MUC5AC, a predominant gel-forming mucin secreted by airway epithelia, can be induced by various inflammatory mediators such as prostaglandins. The two major prostaglandins involved in inflammation are PGE(2) and PGF(2alpha). PGE(2)-induced mucin production has been well studied, but the effect of PGF(2alpha) on mucin production remains poorly understood. To elucidate the effect and underlying mechanism of PGF(2alpha) on MUC5AC production, we investigated the signal transduction of PGF(2alpha) associated with this effect using normal human tracheobronchial epithelial cells. Our results demonstrated that PGF(2alpha) induces MUC5AC overproduction via a signaling cascade involving protein kinase C, ERK, p90 ribosomal S6 protein kinase, and CREB. The regulation of PGF(2alpha)-induced MUC5AC expression by CREB was further confirmed by cAMP response element-dependent MUC5AC promoter activity and by interaction between CREB and MUC5AC promoter. The abrogation of all downstream signaling activities via suppression of each signaling molecule along the pathway indicates that a single pathway from PGF(2alpha) receptor to CREB is responsible for inducing MUC5AC overproduction. As CREB also mediates mucin overproduction induced by PGE(2) and other inflammatory mediators, our findings have important clinical implications for the management of airway mucus hypersecretion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: We previously identified ebpR, encoding a potential member of the AtxA/Mga transcriptional regulator family, and showed that it is important for transcriptional activation of the Enterococcus faecalis endocarditis and biofilm associated pilus operon, ebpABC. Although ebpR is not absolutely essential for ebpABC expression (100-fold reduction), its deletion led to phenotypes similar to those of an ebpABC mutant such as absence of pili at the cell surface and, consequently, reduced biofilm formation. A non-piliated ebpABC mutant has been shown to be attenuated in a rat model of endocarditis and in a murine urinary tract infection model, indicating an important participation of the ebpR-ebpABC locus in virulence. However, there is no report relating to the environmental conditions that affect expression of the ebpR-ebpABC locus. RESULTS: In this study, we examined the effect of CO2/HCO3(-), pH, and the Fsr system on the ebpR-ebpABC locus expression. The presence of 5% CO2/0.1 M HCO3(-) increased ebpR-ebpABC expression, while the Fsr system was confirmed to be a weak repressor of this locus. The mechanism by which the Fsr system repressed the ebpR-ebpABC locus expression appears independent of the effects of CO2(-) bicarbonate. Furthermore, by using an ebpA::lacZ fusion as a reporter, we showed that addition of 0.1 M sodium bicarbonate to TSBG (buffered at pH 7.5), but not the presence of 5% CO2, induced ebpA expression in TSBG broth. In addition, using microarray analysis, we found 73 genes affected by the presence of sodium bicarbonate (abs(fold) > 2, P < 0.05), the majority of which belong to the PTS system and ABC transporter families. Finally, pilus production correlated with ebpA mRNA levels under the conditions tested. CONCLUSIONS: This study reports that the ebp locus expression is enhanced by the presence of bicarbonate with a consequential increase in the number of cells producing pili. Although the molecular basis of the bicarbonate effect remains unclear, the pathway is independent of the Fsr system. In conclusion, E. faecalis joins the growing family of pathogens that regulates virulence gene expression in response to bicarbonate and/or CO2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: The present study defines genomic loci underlying coordinate changes in gene expression following retinal injury. METHODS: A group of acute phase genes expressed in diverse nervous system tissues was defined by combining microarray results from injury studies from rat retina, brain, and spinal cord. Genomic loci regulating the brain expression of acute phase genes were identified using a panel of BXD recombinant inbred (RI) mouse strains. Candidate upstream regulators within a locus were defined using single nucleotide polymorphism databases and promoter motif databases. RESULTS: The acute phase response of rat retina, brain, and spinal cord was dominated by transcription factors. Three genomic loci control transcript expression of acute phase genes in brains of BXD RI mouse strains. One locus was identified on chromosome 12 and was highly correlated with the expression of classic acute phase genes. Within the locus we identified the inhibitor of DNA binding 2 (Id2) as a candidate upstream regulator. Id2 was upregulated as an acute phase transcript in injury models of rat retina, brain, and spinal cord. CONCLUSIONS: We defined a group of transcriptional changes associated with the retinal acute injury response. Using genetic linkage analysis of natural transcript variation, we identified regulatory loci and candidate regulators that control transcript levels of acute phase genes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The intestinal tract of schistosomes opens at the mouth and leads into the foregut or oesophageal region that is lined with syncytium continuous with the apical cytoplasm of the tegument. The oesophagus is surrounded by a specialised gland, the oesophageal gland. This gland releases materials into the lumen of the oesophagus and the region is thought to initiate the lysis of erythrocytes and neutralisation of immune effectors of the host. The oesophageal region is present in the early invasive schistosomulum, a stage potentially targetable by anti-schistosome vaccines. We used a 44k oligonucleotide microarray to identify highly up-regulated genes in microdissected frozen sections of the oesophageal gland of male worms of S. mansoni. We show that 122 genes were up-regulated 2-fold or higher in the oesophageal gland compared with a whole male worm tissue control. The enriched genes included several associated with lipid metabolism and transmembrane transport as well as some micro-exon genes. Since the oesophageal gland is important in the initiation of digestion and the fact that it develops early after invasion of the mammalian host, further study of selected highly up-regulated functionally important genes in this tissue may reveal new anti-schistosome intervention targets for schistosomiasis control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To obtain a comprehensive genomic profile of presenting multiple myeloma cases we performed high-resolution single nucleotide polymorphism mapping array analysis in 114 samples alongside 258 samples analyzed by U133 Plus 2.0 expression array (Affymetrix). We examined DNA copy number alterations and loss of heterozygosity (LOH) to define the spectrum of minimally deleted regions in which relevant genes of interest can be found. The most frequent deletions are located at 1p (30%), 6q (33%), 8p (25%), 12p (15%), 13q (59%), 14q (39%), 16q (35%), 17p (7%), 20 (12%), and 22 (18%). In addition, copy number-neutral LOH, or uniparental disomy, was also prevalent on 1q (8%), 16q (9%), and X (20%), and was associated with regions of gain and loss. Based on fluorescence in situ hybridization and expression quartile analysis, genes of prognostic importance were found to be located at 1p (FAF1, CDKN2C), 1q (ANP32E), and 17p (TP53). In addition, we identified common homozygously deleted genes that have functions relevant to myeloma biology. Taken together, these analyses indicate that the crucial pathways in myeloma pathogenesis include the nuclear factor-κB pathway, apoptosis, cell-cycle regulation, Wnt signaling, and histone modifications. This study was registered at http://isrctn.org as ISRCTN68454111.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: Myeloma is a clonal malignancy of plasma cells. Poor-prognosis risk is currently identified by clinical and cytogenetic features. However, these indicators do not capture all prognostic information. Gene expression analysis can be used to identify poor-prognosis patients and this can be improved by combination with information about DNA-level changes. EXPERIMENTAL DESIGN: Using single nucleotide polymorphism-based gene mapping in combination with global gene expression analysis, we have identified homozygous deletions in genes and networks that are relevant to myeloma pathogenesis and outcome. RESULTS: We identified 170 genes with homozygous deletions and corresponding loss of expression. Deletion within the "cell death" network was overrepresented and cases with these deletions had impaired overall survival. From further analysis of these events, we have generated an expression-based signature associated with shorter survival in 258 patients and confirmed this signature in data from two independent groups totaling 800 patients. We defined a gene expression signature of 97 cell death genes that reflects prognosis and confirmed this in two independent data sets. CONCLUSIONS: We developed a simple 6-gene expression signature from the 97-gene signature that can be used to identify poor-prognosis myeloma in the clinical environment. This signature could form the basis of future trials aimed at improving the outcome of poor-prognosis myeloma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiple myeloma is characterized by genomic alterations frequently involving gains and losses of chromosomes. Single nucleotide polymorphism (SNP)-based mapping arrays allow the identification of copy number changes at the sub-megabase level and the identification of loss of heterozygosity (LOH) due to monosomy and uniparental disomy (UPD). We have found that SNP-based mapping array data and fluorescence in situ hybridization (FISH) copy number data correlated well, making the technique robust as a tool to investigate myeloma genomics. The most frequently identified alterations are located at 1p, 1q, 6q, 8p, 13, and 16q. LOH is found in these large regions and also in smaller regions throughout the genome with a median size of 1 Mb. We have identified that UPD is prevalent in myeloma and occurs through a number of mechanisms including mitotic nondisjunction and mitotic recombination. For the first time in myeloma, integration of mapping and expression data has allowed us to reduce the complexity of standard gene expression data and identify candidate genes important in both the transition from normal to monoclonal gammopathy of unknown significance (MGUS) to myeloma and in different subgroups within myeloma. We have documented these genes, providing a focus for further studies to identify and characterize those that are key in the pathogenesis of myeloma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glutamine synthetase (GS) is a vital enzyme for the assimilation of ammonia into amino acids in higher plants. In legumes, GS plays a crucial role in the assimilation of the ammonium released by nitrogen-fixing bacteria in root nodules, constituting an important metabolic knob controlling the nitrogen (N) assimilatory pathways. To identify new regulators of nodule metabolism, we profiled the transcriptome of Medicago truncatula nodules impaired in N assimilation by specifically inhibiting GS activity using phosphinothricin (PPT). Global transcript expression of nodules collected before and after PPT addition (4, 8, and 24 h) was assessed using Affymetrix M. truncatula GeneChip arrays. Hundreds of genes were regulated at the three time points, illustrating the dramatic alterations in cell metabolism that are imposed on the nodules upon GS inhibition. The data indicate that GS inhibition triggers a fast plant defense response, induces premature nodule senescence, and promotes loss of root nodule identity. Consecutive metabolic changes were identified at the three time points analyzed. The results point to a fast repression of asparagine synthesis and of the glycolytic pathway and to the synthesis of glutamate via reactions alternative to the GS/GOGAT cycle. Several genes potentially involved in the molecular surveillance for internal organic N availability are identified and a number of transporters potentially important for nodule functioning are pinpointed. The data provided by this study contributes to the mapping of regulatory and metabolic networks involved in root nodule functioning and highlight candidate modulators for functional analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Grapevine is an extremely important crop worldwide.In southern Europe, post-flowering phases of the growth cycle can occur under high temperatures, excessive light, and drought conditions at soil and/or atmospheric level. In this study, we subjected greenhouse grown grapevine, variety Aragonez, to two individual abiotic stresses, water deficit stress(WDS), and heat stress (HS). The adaptation of plants to stress is a complex response triggered by cascades of molecular net works involved in stress perception, signal transduction, and the expression of specific stress-related genes and metabolites. Approaches such as array-based transcript profiling allow assessing the expression of thousands of genes in control and stress tissues. Using microarrays, we analyzed the leaf transcriptomic profile of the grapevine plants. Photosynthesis measurements verified that the plants were significantly affected by the stresses applied. Leaf gene expression was obtained using a high-throughput transcriptomic grapevine array, the 23K custom-made Affymetrix Vitis GeneChip. We identified 1,594 genes as differentially expressed between control and treatments and grouped them into ten major functional categories using MapMan software. The transcriptome of Aragonez was more significantly affected by HS when compared with WDS. The number of genes coding for heat-shock proteins and transcription factors expressed solely in response to HS suggesting their expression as unique signatures of HS. However, across-talk between the response pathways to both stresses was observed at the level of AP2/ERF transcription factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genetic evidence has implicated several genes as being critical for heart development. However, the inducers of these genes as well as their targets and pathways they are involved with, remain largely unknown. Previous studies in the avian embryo showed that at HH4 Cerberus (cCer) transcripts are detected in the anterior endomesoderm including the heart precursor cells and later in the left lateral plate mesoderm. We have identified a promoter element of chick cCer able to drive EGFP expression in a population of cells that consistently exit from the anterior primitive streak region, from as early as stage HH3+, and that later will populate the heart. Using this promoter element as a tool allowed us to identify novel genes previously not known to potentially play a role in heart development. In order to identify and study genes expressed and involved in the correct development and differentiation of the vertebrate heart precursor cell (HPC) lineages, a differential screening using Affymetrix GeneChip system technologies was performed. Remarkably, this screening led to the identification of more than 700 transcripts differentially expressed in the heart forming regions (HFR). Bioinformatic tools allowed us to filter the large amount of data generated from this approach and to select a few transcripts for in vivo validation. Whole-mount in situ hybridization and sectioning of selected genes showed heart and vascular expression patterns for these transcripts during early chick development. We have developed an effective strategy to specifically identify genes that are differentially expressed in the HPC lineages. Within this set we have identified several genes that are expressed in the heart, blood and vascular lineages, which are likely to play a role in their development. These genes are potential candidates for future functional studies on early embryonic patterning.