332 resultados para Norepinephrine


Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: The use of vasopressors for treatment of hypotension in sepsis may have adverse effects on microcirculatory blood flow in the gastrointestinal tract. The aim of this study was to measure the effects of three vasopressors, commonly used in clinical practice, on microcirculatory blood flow in multiple abdominal organs in sepsis. DESIGN: Random order, cross-over design. SETTING: University laboratory. SUBJECTS: Eight sedated and mechanically ventilated pigs. INTERVENTIONS: Pigs were exposed to fecal peritonitis-induced septic shock. Mesenteric artery flow was measured using ultrasound transit time flowmetry. Microcirculatory flow was measured in gastric, jejunal, and colon mucosa; jejunal muscularis; and pancreas, liver, and kidney using multiple-channel laser Doppler flowmetry. Each animal received a continuous intravenous infusion of epinephrine, norepinephrine, and phenylephrine in a dose increasing mean arterial pressure by 20%. The animals were allowed to recover for 60 mins after each drug before the next was started. MEASUREMENTS AND MAIN RESULTS: During infusion of epinephrine (0.8 +/- 0.2 mug/kg/hr), mean arterial pressure increased from 66 +/- 5 to 83 +/- 5 mm Hg and cardiac index increased by 43 +/- 9%. Norepinephrine (0.7 +/- 0.3 mug/kg/hr) increased mean arterial pressure from 70 +/- 4 to 87 +/- 5 mm Hg and cardiac index by 41 +/- 8%. Both agents caused a significant reduction in superior mesenteric artery flow (11 +/- 4%, p < .05, and 26 +/- 6%, p < .01, respectively) and in microcirculatory blood flow in the jejunal mucosa (21 +/- 5%, p < .01, and 23 +/- 3%, p < .01, respectively) and in the pancreas (16 +/- 3%, p < .05, and 8 +/- 3%, not significant, respectively). Infusion of phenylephrine (3.1 +/- 1.0 mug/kg/min) increased mean arterial pressure from 69 +/- 5 to 85 +/- 6 mm Hg but had no effects on systemic, regional, or microcirculatory flow except for a 30% increase in jejunal muscularis flow (p < .01). CONCLUSIONS: Administration of the vasopressors phenylephrine, epinephrine, and norepinephrine failed to increase microcirculatory blood flow in most abdominal organs despite increased perfusion pressure and-in the case of epinephrine and norepinephrine-increased systemic blood flow. In fact, norepinephrine and epinephrine appeared to divert blood flow away from the mesenteric circulation and decrease microcirculatory blood flow in the jejunal mucosa and pancreas. Phenylephrine, on the other hand, appeared to increase blood pressure without affecting quantitative blood flow or distribution of blood flow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: This study was designed to examine differences in the arteriolar vasoconstrictive response between arginine vasopressin (AVP) and norepinephrine (NE) on the microcirculatory level in the hamster window chamber model in unanesthetized, normotonic hamsters using intravital microscopy. It is known from patients with advanced vasodilatory shock that AVP exerts strong additional vasoconstriction when incremental dosage increases of NE have no further effect on mean arterial blood pressure (MAP). METHODS: In a prospective controlled experimental study, eleven awake, male golden Syrian hamsters were instrumented with a viewing window inserted into the dorsal skinfold. NE (2 microg/kg/minute) and AVP (0.0001 IU/kg/minute, equivalent to 4 IU/h in a 70 kg patient) were continuously infused to achieve a similar increase in MAP. According to their position within the arteriolar network, arterioles were grouped into five types: A0 (branch off small artery) to A4 (branch off A3 arteriole). RESULTS: Reduction of arteriolar diameter (NE, -31 +/- 12% versus AVP, -49 +/- 7%; p = 0.002), cross sectional area (NE, -49 +/- 17% versus AVP, -73 +/- 7%; p = 0.002), and arteriolar blood flow (NE, -62 +/- 13% versus AVP, -80 +/- 6%; p = 0.004) in A0 arterioles was significantly more pronounced in AVP animals. There was no difference in red blood cell velocities in A0 arterioles between groups. The reduction of diameter, cross sectional area, red blood cell velocity, and arteriolar blood flow in A1 to A4 arterioles was comparable in AVP and NE animals. CONCLUSION: Within the microvascular network, AVP exerted significantly stronger vasoconstriction on large A0 arterioles than NE under physiological conditions. This observation may partly explain why AVP is such a potent vasopressor hormone and can increase systemic vascular resistance even in advanced vasodilatory shock unresponsive to increases in standard catecholamine therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

STUDY OBJECTIVE: Caregiving for a relative with Alzheimer disease has been associated with sympathoadrenal medullary arousal and morbidity and mortality. In this study, we examined if sleep disturbance of elderly caregivers was associated with physiologic markers of cardiovascular risk, including plasma norepinephrine, epinephrine, and the hemostasis marker D-dimer. DESIGN: Cross-sectional. SETTING: Community-based sample of elderly caregivers of spouses with Alzheimer disease assessed within their homes. PARTICIPANTS: A sample of 40 elderly spousal caregivers of patients with Alzheimer disease. MEASUREMENTS AND RESULTS: Participants underwent in-home full-night polysomnography and had plasma assayed for norepinephrine and epinephrine. Using multiple regression analyses and controlling for a number of cardiovascular risk factors (e.g., age, sex, blood pressure, body mass index), increased wake after sleep onset was positively associated with norepinephrine levels (beta = .35; t = 2.45, df = 32, p = .020) and plasma D-dimer (beta = .31; t = 2.18, df = 29, p = .038). Further, plasma norepinephrine was significantly associated with D-dimer (beta = .34; t = 2.11, df = 29, p = .044). Additional analyses indicated that norepinephrine accounted for 28% of the relationship between wake after sleep onset and D-dimer. No association was observed between sleep variables and epinephrine. CONCLUSIONS: These findings provide preliminary evidence that sleep disturbance may contribute to morbidity in caregivers through sympathoadrenal medullary arousal and downstream physiologic effects such as altering the hemostasis environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT: INTRODUCTION: Low blood pressure, inadequate tissue oxygen delivery and mitochondrial dysfunction have all been implicated in the development of sepsis-induced organ failure. This study evaluated the effect on liver mitochondrial function of using norepinephrine to increase blood pressure in experimental sepsis. METHODS: Thirteen anaesthetized pigs received endotoxin (Escherichia coli lipopolysaccharide B0111:B4; 0.4 mug/kg per hour) and were subsequently randomly assigned to norepinephrine treatment or placebo for 10 hours. Norepinephrine dose was adjusted at 2-hour intervals to achieve 15 mmHg increases in mean arterial blood pressure up to 95 mmHg. Systemic (thermodilution) and hepatosplanchnic (ultrasound Doppler) blood flow were measured at each step. At the end of the experiment, hepatic mitochondrial oxygen consumption (high-resolution respirometry) and citrate synthase activity (spectrophotometry) were assessed. RESULTS: Mean arterial pressure (mmHg) increased only in norepinephrine-treated animals (from 73 [median; range 69 to 81] to 63 [60 to 68] in controls [P = 0.09] and from 83 [69 to 93] to 96 [86 to 108] in norepinephrine-treated animals [P = 0.019]). Cardiac index and systemic oxygen delivery (DO2) increased in both groups, but significantly more in the norepinephrine group (P < 0.03 for both). Cardiac index (ml/min per.kg) increased from 99 (range: 72 to 112) to 117 (110 to 232) in controls (P = 0.002), and from 107 (84 to 132) to 161 (147 to 340) in norepinephrine-treated animals (P = 0.001). DO2 (ml/min per.kg) increased from 13 (range: 11 to 15) to 16 (15 to 24) in controls (P = 0.028), and from 16 (12 to 19) to 29 (25 to 52) in norepinephrine-treated animals (P = 0.018). Systemic oxygen consumption (systemic VO2) increased in both groups (P < 0.05), whereas hepatosplanchnic flows, DO2 and VO2 remained stable. The hepatic lactate extraction ratio decreased in both groups (P = 0.05). Liver mitochondria complex I-dependent and II-dependent respiratory control ratios were increased in the norepinephrine group (complex I: 3.5 [range: 2.1 to 5.7] in controls versus 5.8 [4.8 to 6.4] in norepinephrine-treated animals [P = 0.015]; complex II: 3.1 [2.3 to 3.8] in controls versus 3.7 [3.3 to 4.6] in norepinephrine-treated animals [P = 0.09]). No differences were observed in citrate synthase activity. CONCLUSION: Norepinephrine treatment during endotoxaemia does not increase hepatosplanchnic flow, oxygen delivery or consumption, and does not improve the hepatic lactate extraction ratio. However, norepinephrine increases the liver mitochondria complex I-dependent and II-dependent respiratory control ratios. This effect was probably mediated by a direct effect of norepinephrine on liver cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Caring for a spouse with Alzheimer's disease is associated with increased psychological distress, impaired immunity, and heightened cardiovascular risk. Hyperreactivity of sympathetic and platelet activation responses to acute psychological stress, or the failure to recover quickly from stressful events, may constitute an important pathway linking stress and negative affect with cardiovascular disease (CVD). OBJECTIVES: (1) To evaluate associations between negative affect (i.e., depressive and anxious symptoms) with increased norepinephrine and P-selectin responses to an acute psychological stress task. (2) To establish whether these associations are augmented among elderly spousal caregivers (CG) compared to non-caregivers (NC). METHODS: Depressive (DEP) and anxious (ANX) symptoms from the Brief Symptom Inventory were assessed among 39 CG and 31 NC. Plasma norepinephrine levels (NE) and percent platelet P-selectin (PSEL) expression were assayed at three time-points: rest, immediately following a laboratory speech test (reactivity), and after 14 min of recovery. Results: Among CG, but not NC, increased symptoms of depression and anxiety were associated with delayed NE recovery (DEP: beta=.460, p=.008; ANX: beta=.361, p=.034), increased PSEL reactivity (DEP: beta=.703, p<.001; ANX: beta=.526, p=.002), and delayed PSEL recovery (DEP: beta=.372, p=.039; ANX: beta=.295, p=.092), while controlling for age, gender, aspirin use, antidepressant use, and preexisting CVD. Bivariate correlations showed delayed NE recovery was also associated with increased PSEL reactivity (r=.416) and delayed PSEL recovery (r=.372; all ps<.05) among CG but not NC. DISCUSSION: Among chronically stressed caregivers, increased levels of depressive and anxious symptoms are associated with prolonged sympathetic activation and pronounced platelet activation. These changes may represent one pathway linking caregiving stress to cardiovascular risk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Vasopressor-induced hypertension is routinely indicated for prevention and treatment of cerebral vasospasm (CVS) after subarachnoid haemorrhage (SAH). Mechanisms underlying patients' clinical improvement during vasopressor-induced hypertension remain incompletely understood. The aim of this study was to evaluate angiographic effects of normovolaemic Norepinephrine (NE)-induced hypertension therapy on the rabbit basilar artery (BA) after SAH. METHODS: Cerebral vasospasm was induced using the one-haemorrhage rabbit model; sham-operated animals served as controls. Five days later the animals underwent follow-up angiography prior to and during NE-induced hypertension. Changes in diameter of the BA were digitally calculated in mean microm +/- SEM (standard error of mean). FINDINGS: Significant CVS of 14.2% was documented in the BA of the SAH animals on day 5 compared to the baseline angiogram on day 0 (n = 12, p < 0.01), whereas the BA of the control animals remained statistically unchanged (n = 12, p > 0.05). During systemic administration of NE, mean arterial pressure increased from 70.0 +/- 1.9 mmHg to 136.0 +/- 2.1 mmHg in the SAH group (n = 12, p < 0.001) and from 72.0 +/- 3.1 to 137.8 +/- 1.3 in the control group (n = 12, p < 0.001). On day 5 after SAH, a significant dilatation of the BA in response to norepinephrine could be demonstrated in both groups. The diameter of the BA in the SAH group increased from 640.5 +/- 17.5 microm to 722.5 +/- 23.7 microm (n = 12, p < 0.05; ). In the control group the diameter increased from 716.8 +/- 15.5 microm to 779.9 +/- 24.1 microm (n = 12, p < 0.05). CONCLUSION: This study demonstrated that NE-induced hypertension causes angiographic dilatation of the BA in the SAH rabbit model. Based on these observations, it can be hypothesised that clinical improvement during vasopressor-induced hypertension therapy after SAH might be explained with cerebral vasodilatation mechanisms that lead to improvement of cerebral blood flow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hypertension is a known risk factor for cardiovascular disease. Hypertensive individuals show exaggerated norepinephrine (NE) reactivity to stress. Norepinephrine is a known lipolytic factor. It is unclear if, in hypertensive individuals, stress-induced increases in NE are linked with the elevations in stress-induced circulating lipid levels. Such a mechanism could have implications for atherosclerotic plaque formation. In a cross-sectional, quasi-experimentally controlled study, 22 hypertensive and 23 normotensive men (mean +/- SEM, 45 +/- 3 years) underwent an acute standardized psychosocial stress task combining public speaking and mental arithmetic in front of an audience. We measured plasma NE and the plasma lipid profile (total cholesterol [TC], low-density-lipoprotein cholesterol [LDL-C], high-density-lipoprotein cholesterol, and triglycerides) immediately before and after stress and at 20 and 60 minutes of recovery. All lipid levels were corrected for stress hemoconcentration. Compared with normotensives, hypertensives had greater TC (P = .030) and LDL-C (P = .037) stress responses. Independent of each other, mean arterial pressure (MAP) upon screening and immediate increase in NE predicted immediate stress change in TC (MAP: beta = .41, P = .003; NE: beta = .35, P = .010) and LDL-C (MAP: beta = .32, P = .024; NE: beta = .38, P = .008). Mean arterial pressure alone predicted triglycerides stress change (beta = .32, P = .043) independent of NE stress change, age, and BMI. The MAP-by-NE interaction independently predicted immediate stress change of high-density-lipoprotein cholesterol (beta = -.58, P < .001) and of LDL-C (beta = -.25, P < .08). We conclude that MAP and NE stress reactivity may elicit proatherogenic changes of plasma lipids in response to acute psychosocial stress, providing one mechanism by which stress might increase cardiovascular risk in hypertension.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Anesthetics and neuraxial anesthesia commonly result in vasodilation/hypotension. Norepinephrine counteracts this effect and thus allows for decreased intraoperative hydration. The authors investigated whether this approach could result in reduced postoperative complication rate. METHODS In this single-center, double-blind, randomized, superiority trial, 166 patients undergoing radical cystectomy and urinary diversion were equally allocated to receive 1 ml·kg·h of balanced Ringer's solution until the end of cystectomy and then 3 ml·kg·h until the end of surgery combined with preemptive norepinephrine infusion at an initial rate of 2 µg·kg·h (low-volume group; n = 83) or 6 ml·kg·h of balanced Ringer's solution throughout surgery (control group; n = 83). Primary outcome was the in-hospital complication rate. Secondary outcomes were hospitalization time, and 90-day mortality. RESULTS In-hospital complications occurred in 43 of 83 patients (52%) in the low-volume group and in 61 of 83 (73%) in the control group (relative risk, 0.70; 95% CI, 0.55-0.88; P = 0.006). The rates of gastrointestinal and cardiac complications were lower in the low-volume group than in the control group (5 [6%] vs. 31 [37%]; relative risk, 0.16; 95% CI, 0.07-0.39; P < 0.0001 and 17 [20%] vs. 39 [48%], relative risk, 0.43; 95% CI, 0.26-0.60; P = 0.0003, respectively). The median hospitalization time was 15 days [range, 11, 27d] in the low-volume group and 17 days [11, 95d] in the control group (P = 0.02). The 90-day mortality was 0% in the low-volume group and 4.8% in the control group (P = 0.12). CONCLUSION A restrictive-deferred hydration combined with preemptive norepinephrine infusion during radical cystectomy and urinary diversion significantly reduced the postoperative complication rate and hospitalization time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Open radical cystectomy (ORC) is associated with substantial blood loss and a high incidence of perioperative blood transfusions. Strategies to reduce blood loss and blood transfusion are warranted. OBJECTIVE To determine whether continuous norepinephrine administration combined with intraoperative restrictive hydration with Ringer's maleate solution can reduce blood loss and the need for blood transfusion. DESIGN, SETTING, AND PARTICIPANTS This was a double-blind, randomised, parallel-group, single-centre trial including 166 consecutive patients undergoing ORC with urinary diversion (UD). Exclusion criteria were severe hepatic or renal dysfunction, congestive heart failure, and contraindications to epidural analgesia. INTERVENTION Patients were randomly allocated to continuous norepinephrine administration starting with 2 μg/kg per hour combined with 1 ml/kg per hour until the bladder was removed, then to 3 ml/kg per hour of Ringer's maleate solution (norepinephrine/low-volume group) or 6 ml/kg per hour of Ringer's maleate solution throughout surgery (control group). OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Intraoperative blood loss and the percentage of patients requiring blood transfusions perioperatively were assessed. Data were analysed using nonparametric statistical models. RESULTS AND LIMITATIONS Total median blood loss was 800 ml (range: 300-1700) in the norepinephrine/low-volume group versus 1200 ml (range: 400-2800) in the control group (p<0.0001). In the norepinephrine/low-volume group, 27 of 83 patients (33%) required an average of 1.8 U (±0.8) of packed red blood cells (PRBCs). In the control group, 50 of 83 patients (60%) required an average of 2.9 U (±2.1) of PRBCs during hospitalisation (relative risk: 0.54; 95% confidence interval [CI], 0.38-0.77; p=0.0006). The absolute reduction in transfusion rate throughout hospitalisation was 28% (95% CI, 12-45). In this study, surgery was performed by three high-volume surgeons using a standardised technique, so whether these significant results are reproducible in other centres needs to be shown. CONCLUSIONS Continuous norepinephrine administration combined with restrictive hydration significantly reduces intraoperative blood loss, the rate of blood transfusions, and the number of PRBC units required per patient undergoing ORC with UD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optimal norepinephrine levels in the prefrontal cortex (PFC) increase delay-related firing and enhance working memory, whereas stress-related or pathologically high levels of norepinephrine are believed to inhibit working memory via α1 adrenoceptors. However, it has been shown that activation of Gq-coupled and phospholipase C-linked receptors can induce persistent firing, a cellular correlate of working memory, in cortical pyramidal neurons. Therefore, despite its importance in stress and cognition, the exact role of norepinephrine in modulating PFC activity remains elusive. Using electrophysiology and optogenetics, we report here that norepinephrine induces persistent firing in pyramidal neurons of the PFC independent of recurrent fast synaptic excitation. This persistent excitatory effect involves presynaptic α1 adrenoceptors facilitating glutamate release and subsequent activation of postsynaptic mGluR5 receptors, and is enhanced by postsynaptic α2 adrenoceptors inhibiting HCN channel activity. Activation of α2 adrenoceptors or inhibition of HCN channels also enhances cholinergic persistent responses in pyramidal neurons, providing a mechanism of crosstalk between noradrenergic and cholinergic inputs. The present study describes a novel cellular basis for the noradrenergic control of cortical information processing and supports a synergistic combination of intrinsic and network mechanisms for the expression of mnemonic properties in pyramidal neurons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract BACKGROUND: Pulse pressure variations (PPVs) and stroke volume variations (SVVs) are dynamic indices for predicting fluid responsiveness in intensive care unit patients. These hemodynamic markers underscore Frank-Starling law by which volume expansion increases cardiac output (CO). The aim of the present study was to evaluate the impact of the administration of catecholamines on PPV, SVV, and inferior vena cava flow (IVCF). METHODS: In this prospective, physiologic, animal study, hemodynamic parameters were measured in deeply sedated and mechanically ventilated pigs. Systemic hemodynamic and pressure-volume loops obtained by inferior vena cava occlusion were recorded. Measurements were collected during two conditions, that is, normovolemia and hypovolemia, generated by blood removal to obtain a mean arterial pressure value lower than 60 mm Hg. At each condition, CO, IVCF, SVV, and PPV were assessed by catheters and flow meters. Data were compared between the conditions normovolemia and hypovolemia before and after intravenous administrations of norepinephrine and epinephrine using a nonparametric Wilcoxon test. RESULTS: Eight pigs were anesthetized, mechanically ventilated, and equipped. Both norepinephrine and epinephrine significantly increased IVCF and decreased PPV and SVV, regardless of volemic conditions (p < 0.05). However, epinephrine was also able to significantly increase CO regardless of volemic conditions. CONCLUSION: The present study demonstrates that intravenous administrations of norepinephrine and epinephrine increase IVCF, whatever the volemic conditions are. The concomitant decreases in PPV and SVV corroborate the fact that catecholamine administration recruits unstressed blood volume. In this regard, understanding a decrease in PPV and SVV values, after catecholamine administration, as an obvious indication of a restored volemia could be an outright misinterpretation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Mental stress reliably induces increases in salivary alpha amylase (sAA), a suggested surrogate marker for sympathetic nervous system (SNS) reactivity. While stress-induced sAA increases correlate with norepinephrine (NE) secretion, a potential mediating role of noradrenergic mechanisms remains unclear. In this study, we investigated for the first time in humans whether a NE-stress-reactivity mimicking NE-infusion with and without alpha-adrenergic blockade by phentolamine would induce changes in sAA. METHODS: In a single-blind placebo-controlled within-subjects design, 21 healthy men (29-66 years) took part in three different experimental trials varying in terms of substance infusion with a 1-min first infusion followed by a 15-min second infusion: saline-infusion (trial-1), NE-infusion (5 μg/min) without alpha-adrenergic blockade (trial-2), and with phentolamine-induced non-selective blockade of alpha1- and alpha2-adrenergic receptors (trial-3). Saliva samples were collected immediately before, during, and several times after substance infusion in addition to blood pressure and heart rate readings. RESULTS: Experimental trials significantly differed in sAA reactivity to substance-infusion (p=.001) with higher sAA reactivity following NE-infusion with (trial-3; p=.001) and without alpha-adrenergic-blockade (trial-2; p=.004) as compared to placebo-infusion (trial-1); sAA infusion reactivity did not differ between trial-2 and trial-3 (p=.29). Effective phentolamine application was verified by blood pressure and heart rate infusion reactivity. Salivary cortisol was not affected by NE, either with or without alpha-adrenergic-blockade. CONCLUSIONS: We found that NE-infusion stimulates sAA secretion, regardless of co-administered non-selective alpha-adrenergic blockade by phentolamine, suggesting that the mechanism underlying stress-induced sAA increases may involve NE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transporters for the biogenic amines dopamine, norepinephrine, epinephrine and serotonin are largely responsible for transmitter inactivation after release. They also serve as high-affinity targets for a number of clinically relevant psychoactive agents, including antidepressants, cocaine, and amphetamines. Despite their prominent role in neurotransmitter inactivation and drug responses, we lack a clear understanding of the permeation pathway or regulation mechanisms at the single transporter level. The resolution of radiotracer-based flux techniques limits the opportunities to dissect these problems. Here we combine patch-clamp recording techniques with microamperometry to record the transporter-mediated flux of norepinephrine across isolated membrane patches. These data reveal voltage-dependent norepinephrine flux that correlates temporally with antidepressant-sensitive transporter currents in the same patch. Furthermore, we resolve unitary flux events linked with bursts of transporter channel openings. These findings indicate that norepinephrine transporters are capable of transporting neurotransmitter across the membrane in discrete shots containing hundreds of molecules. Amperometry is used widely to study neurotransmitter distribution and kinetics in the nervous system and to detect transmitter release during vesicular exocytosis. Of interest regarding the present application is the use of amperometry on inside-out patches with synchronous recording of flux and current. Thus, our results further demonstrate a powerful method to assess transporter function and regulation.