202 resultados para Neuroprotection


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Delaying clinical disease onset would greatly reduce neurodegenerative disease burden, but the mechanisms influencing early preclinical progression are poorly understood. Here, we show that in mouse models of familial motoneuron (MN) disease, SOD1 mutants specifically render vulnerable MNs dependent on endogenous neuroprotection signaling involving excitability and mammalian target of rapamycin (mTOR). The most vulnerable low-excitability FF MNs already exhibited evidence of pathology and endogenous neuroprotection recruitment early postnatally. Enhancing MN excitability promoted MN neuroprotection and reversed misfolded SOD1 (misfSOD1) accumulation and MN pathology, whereas reducing MN excitability augmented misfSOD1 accumulation and accelerated disease. Inhibiting metabotropic cholinergic signaling onto MNs reduced ER stress, but enhanced misfSOD1 accumulation and prevented mTOR activation in alpha-MNs. Modulating excitability and/or alpha-MN mTOR activity had comparable effects on the progression rates of motor dysfunction, denervation, and death. Therefore, excitability and mTOR are key endogenous neuroprotection mechanisms in motoneurons to counteract clinically important disease progression in ALS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dysfunction and loss of neurons are the major characteristics of CNS disorders that include stroke, multiple sclerosis, and Alzheimer's disease. Activation of the Toll-like receptor 7 by extracellular microRNA let-7, a highly expressed microRNA in the CNS, induces neuronal cell death. Let-7 released from injured neurons and immune cells acts on neighboring cells, exacerbating CNS damage. Here we show that a synthetic peptide analogous to the mammalian PreImplantation factor (PIF) secreted by developing embryos and which is present in the maternal circulation during pregnancy inhibits the biogenesis of let-7 in both neuronal and immune cells of the mouse. The synthetic peptide, sPIF, destabilizes KH-type splicing regulatory protein (KSRP), a key microRNA-processing protein, in a Toll-like receptor 4 (TLR4)-dependent manner, leading to decreased production of let-7. Furthermore, s.c. administration of sPIF into neonatal rats following hypoxic-ischemic brain injury robustly rescued cortical volume and number of neurons and decreased the detrimental glial response, as is consistent with diminished levels of KSRP and let-7 in sPIF-treated brains. Our results reveal a previously unexpected mechanism of action of PIF and underscore the potential clinical utility of sPIF in treating hypoxic-ischemic brain damage. The newly identified PIF/TLR4/KSRP/let-7 regulatory axis also may operate during embryo implantation and development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

STUDY OBJECTIVES Sleep deprivation (SDp) performed before stroke induces an ischemic tolerance state as observed in other forms of preconditioning. As the mechanisms underlying this effect are not well understood, we used DNA oligonucleotide microarray analysis to identify the genes and the gene-pathways underlying SDp preconditioning effects. DESIGN Gene expression was analyzed 3 days after stroke in 4 experimental groups: (i) SDp performed before focal cerebral ischemia (IS) induction; (ii) SDp performed before sham surgery; (iii) IS without SDp; and (iv) sham surgery without SDp. SDp was performed by gentle handling during the last 6 h of the light period, and ischemia was induced immediately after. SETTINGS Basic sleep research laboratory. MEASUREMENTS AND RESULTS Stroke induced a massive alteration in gene expression both in sleep deprived and non-sleep deprived animals. However, compared to animals that underwent ischemia alone, SDp induced a general reduction in transcriptional changes with a reduction in the upregulation of genes involved in cell cycle regulation and immune response. Moreover, an upregulation of a new neuroendocrine pathway which included melanin concentrating hormone, glycoprotein hormones-α-polypeptide and hypocretin was observed exclusively in rats sleep deprived before stroke. CONCLUSION Our data indicate that sleep deprivation before stroke reprogrammed the signaling response to injury. The inhibition of cell cycle regulation and inflammation are neuroprotective mechanisms reported also for other forms of preconditioning treatment, whereas the implication of the neuroendocrine function is novel and has never been described before. These results therefore provide new insights into neuroprotective mechanisms involved in ischemic tolerance mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A synthetic peptide (sPIF) analogous to the mammalian embryo-derived PreImplantation Factor (PIF) enables neuroprotection in rodent models of experimental autoimmune encephalomyelitis and perinatal brain injury. The protective effects have been attributed, in part, to sPIF's ability to inhibit the biogenesis of microRNA let-7, which is released from injured cells during central nervous system (CNS) damage and induces neuronal death. Here, we uncover another novel mechanism of sPIF-mediated neuroprotection. Using a clinically relevant rat newborn brain injury model, we demonstrate that sPIF, when subcutaneously administrated, is able to reduce cell death, reverse neuronal loss and restore proper cortical architecture. We show, both in vivo and in vitro, that sPIF activates cyclic AMP dependent protein kinase (PKA) and calcium-dependent protein kinase (PKC) signaling, leading to increased phosphorylation of major neuroprotective substrates GAP-43, BAD and CREB. Phosphorylated CREB in turn facilitates expression of Gap43, Bdnf and Bcl2 known to have important roles in regulating neuronal growth, survival and remodeling. As is the case in sPIF-mediated let-7 repression, we provide evidence that sPIF-mediated PKA/PKC activation is dependent on TLR4 expression. Thus, we propose that sPIF imparts neuroprotection via multiple mechanisms at multiple levels downstream of TLR4. Given the recent FDA fast-track approval of sPIF for clinical trials, its potential clinical application for treating other CNS diseases can be envisioned.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Survivors of premature birth suffer from long term disabilities. Synthetic PreImplantation Factor (sPIF*) modulates inflammatory responses and reverses neuroinflammation. Proteinkinase A (PKA) and protein kinase C (PKC) are crucial signaling molecules. PKA up-regulates IL-10 and brain-derived neurotrophic factor (BDNF) expression, which exert neuroprotective effects. Anti-apoptotic phosphorylation of Bad is mediated by PKA. PKC phosphorylates GAP-43, a marker for neuronal plasticity and structural recovery. We explored sPIF protective role in neuronal (N2a) cells and in a rat model of encephalopathy of prematurity. *proprietary. STUDY DESIGN: Cells were subjected to LPS and treated with sPIF or scrambled sPIF. Neonatal rats (postnatal day 3: P3) were subjected to LPS, ligation of carotid artery, and hypoxia (8% O2, 65min; n¼ 30). sPIF (0.75mg/kg twice daily) was injected (P6-13) and brains harvested at P13. sPIF’s potential and mechanisms were evaluated using immunohistochemistry, ELISA, Western Blot, and qRT-PCR. Data were analyzed using two-tailed Student’s t-test. P<0.05 wasconsidered statistically significant. RESULTS: In vitro sPIF increased PKA/PKC activity in time dependent manner (Fig. 1A). sPIF induced higher IL-10, BDNF, and GAP-43 and lower CASP3, BAD, and TNF-a mRNA levels (Fig. 1B,C). sPIF increased pGap-43/Gap-43 and decreased pBad/Bad ratio while decreasing Bad (Fig. 1 D,E). In brain tissue sPIF treatment resulted in rescued neuronal number (NeuN positive cells) and reduced apoptosis (Casp-3 positive cells) with decreased glial (Iba-1 positive cells) activation (Fig. 2A,B). The Iba-1 morphology changed from predominantly amoeboid to ramified state. Additionally sPIF increased IL-10 mRNA levels (Fig. 2C) and pGap-43/Gap-43 ratio (Fig. 2D). CONCLUSION: sPIF modulates PKA/PKC pathways reducing apoptosis and inflammatory responses while increasing neuronal plasticity and survival. The identified PKA/PKC regulatory axis strengthens the potential of sPIF in reducing the burden of prematurity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND The noble gas xenon is considered as a neuroprotective agent, but availability of the gas is limited. Studies on neuroprotection with the abundant noble gases helium and argon demonstrated mixed results, and data regarding neuroprotection after cardiac arrest are scant. We tested the hypothesis that administration of 50% helium or 50% argon for 24 h after resuscitation from cardiac arrest improves clinical and histological outcome in our 8 min rat cardiac arrest model. METHODS Forty animals had cardiac arrest induced with intravenous potassium/esmolol and were randomized to post-resuscitation ventilation with either helium/oxygen, argon/oxygen or air/oxygen for 24 h. Eight additional animals without cardiac arrest served as reference, these animals were not randomized and not included into the statistical analysis. Primary outcome was assessment of neuronal damage in histology of the region I of hippocampus proper (CA1) from those animals surviving until day 5. Secondary outcome was evaluation of neurobehavior by daily testing of a Neurodeficit Score (NDS), the Tape Removal Test (TRT), a simple vertical pole test (VPT) and the Open Field Test (OFT). Because of the non-parametric distribution of the data, the histological assessments were compared with the Kruskal-Wallis test. Treatment effect in repeated measured assessments was estimated with a linear regression with clustered robust standard errors (SE), where normality is less important. RESULTS Twenty-nine out of 40 rats survived until day 5 with significant initial deficits in neurobehavioral, but rapid improvement within all groups randomized to cardiac arrest. There were no statistical significant differences between groups neither in the histological nor in neurobehavioral assessment. CONCLUSIONS The replacement of air with either helium or argon in a 50:50 air/oxygen mixture for 24 h did not improve histological or clinical outcome in rats subjected to 8 min of cardiac arrest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

© 2015 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stroke and head trauma are worldwide public health problems and leading causes of death and disability in humans, yet, no adequate neuroprotective treatment is available for therapy. Glutamate antagonists are considered major drug candidates for neuroprotection in stroke and trauma. However, N-methyl-d-aspartate antagonists failed clinical trials because of unacceptable side effects and short therapeutic time window. α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) antagonists derived from the quinoxalinedione scaffold cannot be used in humans because of their insolubility and resulting renal toxicity. Therefore, achieving water solubility of quinoxalinediones without loss of selectivity and potency profiles becomes a major challenge for medicinal chemistry. One of the major tenets in the chemistry of glutamate antagonists is that the incorporation of phosphonate into the glutamate framework results in preferential N-methyl-d-aspartate antagonism. Therefore, synthesis of phosphonate derivatives of quinoxalinediones was not pursued because of a predicted loss of their selectivity toward AMPA. Here, we report that introduction of a methylphosphonate group into the quinoxalinedione skeleton leaves potency as AMPA antagonists and selectivity for the AMPA receptor unchanged and dramatically improves solubility. One such novel phosphonate quinoxalinedione derivative and competitive AMPA antagonist ZK200775 exhibited a surprisingly long therapeutic time window of >4 h after permanent occlusion of the middle cerebral artery in rats and was devoid of renal toxicity. Furthermore, delayed treatment with ZK200775 commencing 2 h after onset of reperfusion in transient middle cerebral artery occlusion resulted in a dramatic reduction of the infarct size. ZK200775 alleviated also both cortical and hippocampal damage induced by head trauma in the rat. These observations suggest that phosphonate quinoxalinedione-based AMPA antagonists may offer new prospects for treatment of stroke and trauma in humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Il lavoro di ricerca presentato in questa tesi di dottorato riguarda l'applicazione di studi di modellistica molecolare per l'individuazione di nuovi approcci farmacologici nel campo della neuroprotezione e del controllo della proliferazione di cellule staminali. Durante il mio dottorato di ricerca, mi sono concentrata sullo studio del sistema degli endocannabinoidi come target per lo sviluppo di nuovi trattamenti neuroprotettivi. In particolare, la mia ricerca ha avuto come obiettivo la modulazione dei livelli di 2-arachidonilglicerolo e arachidonil-etanolamide tramite l'inibizione degli enzimi MGL (monoglyceride lipase) e FAAH (fatty acid amide hydrolase). Il mio progetto di ricerca comprende anche studi di modellistica molecolare per l'individuazione di piccole molecole in grado di inibire il complesso proteina-proteina YAP-TEAD. Tale complesso, coinvolto nei sistemi di regolazione della proliferazione cellulare, rappresenta un target di cruciale importanza nel controllo della proliferazione e differenziazione di cellule staminali e, al tempo stesso, nel controllo dell'espansione tumorale

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parkinson disease is mainly characterized by the degeneration of dopaminergic neurons in the central nervous system, including the retina. Different interrelated molecular mechanisms underlying Parkinson disease-associated neuronal death have been put forward in the brain, including oxidative stress and mitochondrial dysfunction. Systemic injection of the proneurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to monkeys elicits the appearance of a parkinsonian syndrome, including morphological and functional impairments in the retina. However, the intracellular events leading to derangement of dopaminergic and other retinal neurons in MPTP-treated animal models have not been so far investigated. Here we have used a comparative proteomics approach to identify proteins differentially expressed in the retina of MPTP-treated monkeys. Proteins were solubilized from the neural retinas of control and MPTP-treated animals, labelled separately with two different cyanine fluorophores and run pairwise on 2D DIGE gels. Out of >700 protein spots resolved and quantified, 36 were found to exhibit statistically significant differences in their expression levels, of at least ±1.4-fold, in the parkinsonian monkey retina compared with controls. Most of these spots were excised from preparative 2D gels, trypsinized and subjected to MALDI-TOF MS and LC-MS/MS analyses. Data obtained were used for protein sequence database interrogation, and 15 different proteins were successfully identified, of which 13 were underexpressed and 2 overexpressed. These proteins were involved in key cellular functional pathways such as glycolysis and mitochondrial electron transport, neuronal protection against stress and survival, and phototransduction processes. These functional categories underscore that alterations in energy metabolism, neuroprotective mechanisms and signal transduction are involved in MPTPinduced neuronal degeneration in the retina, in similarity to mechanisms thought to underlie neuronal death in the Parkinson’s diseased brain and neurodegenerative diseases of the retina proper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Changes in gene expression are associated with switching to an autoprotected phenotype in response to environmental and physiological stress. Ubiquitous molecular chaperones from the heat shock protein (HSP) superfamily confer neuronal protection that can be blocked by antibodies. Recent research has focused on the interactions between the molecular sensors that affect the increased expression of neuroprotective HSPs above constitutive levels. An examination of the conditions under which the expression of heat shock protein 70 (Hsp70) was up regulated in a hypoxia and anoxia tolerant tropical species, the epaulette shark (Hemiscyllium ocellatum), revealed that up-regulation was dependent on exceeding a stimulus threshold for an oxidative stressor. While hypoxic-preconditioning confers neuroprotective changes, there was no increase in the level of Hsp70 indicating that its increased expression was not associated with achieving a neuroprotected state in response to hypoxia in the epaulette shark. Conversely, there was a significant increase in Hsp70 in response to anoxic-preconditioning, highlighting the presence of a stimulus threshold barrier and raising the possibility that, in this species, Hsp70 contributes to the neuroprotective response to extreme crises, such as oxidative stress. Interestingly, there was a synergistic effect of coincident stressors on Hsp70 expression, which was revealed when metabolic stress was superimposed upon oxidative stress. Brain energy charge was significantly lower when adenosine receptor blockade, provided by treatment with aminophylline, was present prior to the final anoxic episode, under these circumstances, the level of Hsp70 induced was significantly higher than in the pair-matched saline treated controls. An understanding of the molecular and metabolic basis for neuroprotective switches, which result in an up-regulation of neuroprotective Hsp70 expression in the brain, is needed so that intervention strategies can be devised to manage CNS pathologies and minimise damage caused by ischemia and trauma. In addition, the current findings indicate that measurements of HSP expression per se may provide a useful correlate of the level of neuroprotection achieved in the switch to an autoprotected phenotype.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The PC12 and SH-SY5Y cell models have been proposed as potentially realistic models to investigate neuronal cell toxicity. The effects of oxidative stress (OS) caused by both H2O2 and Aβ on both cell models were assessed by several methods. Cell toxicity was quantitated by measuring cell viability using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) viability assay, an indicator of the integrity of the electron transfer chain (ETC), and cell morphology by fluorescence and video microscopy, both of which showed OS to cause decreased viability and changes in morphology. Levels of intracellular peroxide production, and changes in glutathione and carbonyl levels were also assessed, which showed OS to cause increases in intracellular peroxide production, glutathione and carbonyl levels. Differentiated SH-SY5y cells were also employed and observed to exhibit the greatest sensitivity to toxicity. The neurotrophic factor, nerve growth factor (NGF) was shown to cause protection against OS. Cells pre-treated with NGF showed higher viability after OS, generally less apoptotic morphology, recorded less apoptotic nucleiods, generally lower levels of intracellular peroxides and changes in gene expression. The neutrophic factor, brain derived growth factor (BDNF) and ascorbic acid (AA) were also investigated. BDNF showed no specific neuroprotection, however the preliminary data does warrant further investigation. AA showed a 'janus face' showing either anti-oxidant action and neuroprotection or pro-oxidant action depending on the situation. Results showed that the toxic effects of compounds such as Aβ and H2O2 are cell type dependent, and that OS alters glutathione metabolism in neuronal cells. Following toxic insult, glutathione levels are depleted to low levels. It is herein suggested that this lowering triggers an adaptive response causing alterations in glutathione metabolism as assessed by evaluation of glutathione mRNA biosynthetic enzyme expression and the subsequent increase in glutathione peroxidase (GPX) levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims: To determine the visual outcome following initiation of brimonidine therapy in glaucoma. Methods: 16 newly diagnosed previously untreated glaucoma patients were randomly assigned to either timalal 0.5% or brimanidine 0.2%. Visual acuity, contrast sensitivity (CS), visual fields, intraocular pressure (IOP), blaad pressure, and heart rate were evaluated at baseline and after 3 months. Results: IOP reduction was similar far both groups (p<0.05). Brimanidine improved CS; in the right eye at 6 and 12 cpd (p = 0.043, p = 0.017); in the left eye at 3 and 12 cpd (p = 0.044, p = 0.046). Timolol reduced CS at 18 cpd in the right eye (p = 0.041). There was no change in any other measured parameters. Conclusion: Glaucoma patients exhibit improved CS an initiation of brimanidine therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.