956 resultados para Natural Enemy Impact


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Maximizing the contribution of endemic natural enemies to integrated pest management (IPM) programs requires a detailed knowledge of their interactions with the target pest. This experimental field study evaluated the impact of the endemic natural enemy complex of Plutella xylostella (L.) (Lepidoptera: Yponomeutidae) on pest populations in commercial cabbage crops in southeastern Queensland, Australia. Management data were used to score pest management practices at experimental sites on independent Brassica farms practicing a range of pest management strategies, and mechanical methods of natural enemy exclusion were used to assess the impact of natural enemies on introduced cohorts of P. xylostella at each site. Natural enemy impact was greatest at sites adopting IPM and least at sites practicing conventional pest management strategies. At IPM sites, the contribution of natural enemies to P. xylostella mortality permitted the cultivation of marketable crops with no yield loss but with a substantial reduction in insecticide inputs. Three species of larval parasitoids (Diadegma semiclausum Hellen [Hymenoptera: Ichneumonidae], Apanteles ippeus Nixon [Hymenoptera: Braconidae], and Oomyzus sokolowskii Kurdjumov [Hymenoptera: Eulophidae]) and one species of pupal parasitoid Diadromus collaris Gravenhorst (Hymenoptera: Ichneumonidae) attacked immature P. xylostella. The most abundant groups of predatory arthropods caught in pitfall traps were Araneae (Lycosidae) > Coleoptera (Carabidae, Coccinelidae, Staphylinidae) > Neuroptera (Chrysopidae) > Formicidae, whereas on crop foliage Araneae (Clubionidae, Oxyopidae) > Coleoptera (Coccinelidae) > Neuroptera (Chrysopidae) were most common. The abundance and diversity of natural enemies was greatest at sites that adopted IPM, correlating greater P. xylostella mortality at these sites. The efficacy of the natural enemy complex to pest mortality under different pest management regimes and appropriate strategies to optimize this important natural resource are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1 Accurate assessment of the impact of natural enemies on pest populations is fundamental to the design of robust integrated pest management programmes. In most situations, diseases, predators and parasitoids act contemporaneously on insect pest populations and the impact of individual natural enemies, or specific groups of natural enemies, is difficult to interpret. These problems are exacerbated in agro-ecosystems that are frequently disrupted by the application of insecticides. 2 A combination of life-table and natural enemy exclusion techniques was utilized to develop a method for the assessment of the impact of endemic natural enemies on Plutella xylostella populations on commercial Brassica farms. 3 At two of the experimental sites, natural enemies had no impact on P. xylostella survival, at two other sites, natural enemy impact was low but, at a fifth site, natural enemies drastically reduced the P. xylostella population. 4 The calculation of marginal death rates and associated k-values allowed the comparison of mortality factors between experimental sites, and indicated that larval disappearance was consistently the most important mortality factor, followed by egg disappearance, larval parasitism and pupal parasitism. The appropriateness of the methods and assumptions made to calculate the marginal death rates are discussed. 5 The technique represents a robust and easily repeatable method for the analysis of the activity of natural enemies of P. xylostella, which could be adapted for the study of other phytophagous pests.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. Intra-specific variation in plant defence traits has been shown to profoundly affect herbivore community structure. Here we describe two experiments designed to test whether similar effects occur at higher trophic levels, by studying pea aphid–natural enemy interactions in a disused pasture in southern England. 2. In the first experiment, the numbers and identity of natural enemies attacking different monoclonal pea aphid colonies were recorded in a series of assays throughout the period of pea aphid activity. 3. In the summer assay, there was a significant effect of clone on the numbers of aphidophagous hoverfly larvae and the total number of non-hoverfly natural enemies recruited. Clone also appeared to influence the attack rate suffered by the primary predator in the system, the hoverfly Episyrphus balteatus, by Diplazon laetatorius, an ichneumonid parasitoid. Colonies were generally driven to extinction by hoverfly attack, resulting in the recording of low numbers of parasitoids and entomopathogens, suggesting intense intra-guild predation. 4. To further examine the influence of clonal variation on the recruitment of natural enemies, a second experiment was performed to monitor the temporal dynamics of community development. Colonies were destructively sampled every other day and the numbers of natural enemies attacking aphid colonies were recorded. These data demonstrated that clonal variation influenced the timing, abundance, and identity of natural enemies attacking aphid colonies. 5. Taken together, these data suggest that clonal variation may have a significant influence on the patterns of interactions between aphids and their natural enemies, and that such effects are likely to affect our understanding of the ecology and biological control of these insect herbivores.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies in polytunnels were conducted to investigate the effects of ultraviolet (UV)-blocking films on naturally occurring insect pests and their arthropod natural enemies on a cucumber crop. Within tunnels clad with Antibotrytis (blocks light < 400 nm) and UVI/EVA (UV transmitting), 5.8 and 23.4 times more aphids, respectively, were recorded on traps compared with those on traps within tunnels clad with XL 385 (blocks light < 385 nm). When all plants within the UVI/EVA tunnels had become heavily infested with aphids, half of the plants in XL 385 tunnels were uninfested. More Coleoptera and thrips (approximately two times) were recorded under the UVI/EVA film than under the UV-blocking films, but for other arthropod pests (e. g. whitefly, leafhoppers), clear conclusions could not be drawn as low numbers were recorded. Substantial numbers of chalcid parasitoids and syrphids were found under the UV-blocking films, but further research is needed to evaluate fully the effect of such films on biological control of aphids. Higher syrphid numbers and more aphid mummies were recorded under the UVI/EVA film, probably because of the higher numbers of aphids present in tunnels clad with this film. The potential that UV-blocking films have as an effective component of commercial Integrated Pest Management (IPM) systems, for protected horticultural crops, is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability to resist or avoid natural enemy attack is a critically important insect life history trait, yet little is understood of how these traits may be affected by temperature. This study investigated how different genotypes of the pea aphid Acyrthosiphon pisum Harris, a pest of leguminous crops, varied in resistance to three different natural enemies (a fungal pathogen, two species of parasitoid wasp and a coccinellid beetle), and whether expression of resistance was influenced by temperature. Substantial clonal variation in resistance to the three natural enemies was found. Temperature influenced the number of aphids succumbing to the fungal pathogen Erynia neoaphidis Remaudiere & Hermebert, with resistance increasing at higher temperatures (18 vs. 28degreesC). A temperature difference of 5degreesC (18 vs. 23degreesC) did not affect the ability of A. pisum to resist attack by the parasitoids Aphidius ervi Haliday and A. eadyi Stary Gonzalez & Hall. Escape behaviour from foraging coccinellid beetles (Hippodamia convergens Guerin-Meneville) was not directly influenced by aphid clone or temperature (16 vs. 21degreesC). However, there were significant interactions between clone and temperature (while most clones did not respond to temperature, one was less likely to escape at 16degreesC), and between aphid clone and ladybird presence (some clones showed greater changes in escape behaviour in response to the presence of foraging coccinellids than others). Therefore, while larger temperature differences may alter interactions between Acyrthosiphon pisum and an entomopathogen, there is little evidence to suggest that smaller changes in temperature will alter pea aphid-natural enemy interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Scope: Fibers and prebiotics represent a useful dietary approach for modulating the human gut microbiome. Therefore, aim of the present study was to investigate the impact of four flours (wholegrain rye, wholegrain wheat, chickpeas and lentils 50:50, and barley milled grains), characterized by a naturally high content in dietary fibers, on the intestinal microbiota composition and metabolomic output. Methods and results: A validated three-stage continuous fermentative system simulating the human colon was used to resemble the complexity and diversity of the intestinal microbiota. Fluorescence in situ hybridization was used to evaluate the impact of the flours on the composition of the microbiota, while small-molecule metabolome was assessed by NMR analysis followed by multivariate pattern recognition techniques. HT29 cell-growth curve assay was used to evaluate the modulatory properties of the bacterial metabolites on the growth of intestinal epithelial cells. All the four flours showed positive modulations of the microbiota composition and metabolic activity. Furthermore, none of the flours influenced the growth-modulatory potential of the metabolites toward HT29 cells. Conclusion: Our findings support the utilization of the tested ingredients in the development of a variety of potentially prebiotic food products aimed at improving gastrointestinal health.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite its appeal to explain plant invasions, the enemy release hypothesis (ERH) remains largely unexplored for tropical forest trees. Even scarcer are ERH studies conducted on the same host species at both the community and biogeographical scale, irrespective of the system or plant life form. In Cabrits National Park, Dominica, we observed patterns consistent with enemy release of two introduced, congeneric mahogany species, Swietenia macrophylla and S. mahagoni, planted almost 50 years ago. Swietenia populations at Cabrits have reproduced, with S. macrophylla juveniles established in and out of plantation areas at densities much higher than observed in its native range. Swietenia macrophylla juveniles also experienced significantly lower leaf-level herbivory (~3.0%) than nine co-occurring species native to Dominica (8.4–21.8%), and far lower than conspecific herbivory observed in its native range (11%–43%, on average). These complimentary findings at multiple scales support ERH, and confirm that Swietenia has naturalized at Cabrits. However, Swietenia abundance was positively correlated with native plant diversity at the seedling stage, and only marginally negatively correlated with native plant abundance for stems ≥1-cm dbh. Taken together, these descriptive patterns point to relaxed enemy pressure from specialized enemies, specifically the defoliator Steniscadia poliophaea and the shoot-borer Hypsipyla grandella, as a leading explanation for the enhanced recruitment of Swietenia trees documented at Cabrits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract A field survey for natural enemies of Paropsis atomaria was conducted at two south-eastern Queensland Eucalyptus cloeziana plantation sites during 2004–2005. Primary egg and larval parasitoids and associated hyperparasitoids were identified to genus or species, and parasitism rates were determined throughout the season. Predators were identified to family level but their impact was not quantified. P. atomaria adults were also examined as potential hosts for parasitic mites and nematodes. An undescribed species of Neopolycystus (Pteromalidae) was the major primary egg parasitoid species reared from egg batches, parasitising half of all egg batches collected. Three hyperparasitoid species (Baeoanusia albifunicle (Encyrtidae), Neblatticida sp. (Encyrtidae) and Aphaneromella sp. (Platygasteridae) were present, representing around one-quarter to one-third of all emergent wasps; this is the first host association record for Neopolycystus–B. albifunicle. In contrast to populations of P. atomaria from the Australian Capital Territory, primary larval parasitism was very low, around 1%, and attributable only to the tachinid flies Anagonia sp. and Paropsivora sp. However, the presence of the sit-and-wait larval hyperparasitoid, Perilampus sp. (Perilampidae) was high, emerging from around 17% of tachinid pupae, with planidia infesting a further 40% of unparasitised hosts. Three species of podapolipid mites parasitised sexually mature P. atomaria adults, while no nematodes were found in this study. Spiders were the most common predators and their abundance was positively correlated with P. atomaria adult and egg numbers. Although natural enemy species composition was identical between our two study sites, significant differences in abundance and frequency were found between sites

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A field survey for natural enemies of Paropsis atomaria was conducted at two south-eastern Queensland Eucalyptus cloeziana plantation sites during 2004-2005. Primary egg and larval parasitoids and associated hyperparasitoids were identified to genus or species, and parasitism rates were determined throughout the season. Predators were identified to family level but their impact was not quantified. P. atomaria adults were also examined as potential hosts for parasitic mites and nematodes. An undescribed species of Neopolycystus (Pteromalidae) was the major primary egg parasitoid species reared from egg batches, parasitising half of all egg batches collected. Three hyperparasitoid species (Baeoanusia albifunicle (Encyrtidae), Neblatticida sp. (Encyrtidae) and Aphaneromella sp. (Platygasteridae) were present, representing around one-quarter to one-third of all emergent wasps; this is the first host association record for Neopolycystus-B. albifunicle. In contrast to populations of P. atomaria from the Australian Capital Territory, primary larval parasitism was very low, around 1%, and attributable only to the tachinid flies Anagonia sp. and Paropsivora sp. However, the presence of the sit-and-wait larval hyperparasitoid, Perilampus sp. (Perilampidae) was high, emerging from around 17% of tachinid pupae, with planidia infesting a further 40% of unparasitised hosts. Three species of podapolipid mites parasitised sexually mature P. atomaria adults, while no nematodes were found in this study. Spiders were the most common predators and their abundance was positively correlated with P. atomaria adult and egg numbers. Although natural enemy species composition was identical between our two study sites, significant differences in abundance and frequency were found between sites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic agriculture is becoming widespread due to increased consumer demand and regulatory and political support. Organic agriculture can increase arthropod diversity but the response of pests and their natural enemies is variable. Fertiliser is an important component of agricultural systems and its effects on pests and natural enemies will influence agroecosystems. In this study, meta-analysis and vote-counting techniques were used to compare farming system (organic and conventional) and fertiliser effects on arthropod pests and their natural enemies. The meta-analyses indicated that pests generally benefitted from organic techniques, this is particularly evident when experiments were carried out on a smaller scale. Pest responses to organic and conventional fertiliser types were divergent, plant composts benefitted pest arthropods while the opposite was true for manures, this has implications for pest management. Most natural enemy groups responded positively to organic farming although this was not true for Coleopterans. Experimental scale had a prominent impact on natural enemy responses with farm scale studies showing particularly positive effects of organic agriculture on natural enemies. This suggests that it is large scale features of organic agriculture such as landscape heterogeneity that are beneficial to natural enemies. Natural enemy responses to organic fertilisers were positive indicating that field scale management practices including fertiliser can also be important in pest management.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

There is limited understanding about how insect movement patterns are influenced by landscape features, and how landscapes can be managed to suppress pest phytophage populations in crops. Theory suggests that the relative timing of pest and natural enemy arrival in crops may influence pest suppression. However, there is a lack of data to substantiate this claim. We investigate the movement patterns of insects from native vegetation (NV) and discuss the implications of these patterns for pest control services. Using bi-directional interception traps we quantified the number of insects crossing an NV/crop ecotone relative to a control crop/crop interface in two agricultural regions early in the growing season. We used these data to infer patterns of movement and net flux. At the community-level, insect movement patterns were influenced by ecotone in two out of three years by region combinations. At the functional-group level, pests and parasitoids showed similar movement patterns from NV very soon after crop emergence. However, movement across the control interface increased towards the end of the early-season sampling period. Predators consistently moved more often from NV into crops than vice versa, even after crop emergence. Not all species showed a significant response to ecotone, however when a response was detected, these species showed similar patterns between the two regions. Our results highlight the importance of NV for the recruitment of natural enemies for early season crop immigration that may be potentially important for pest suppression. However, NV was also associated with crop immigration by some pest species. Hence, NV offers both opportunities and risks for pest management. The development of targeted NV management may reduce the risk of crop immigration by pests, but not of natural enemies.