991 resultados para Nanotechnology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Herbal medicines have been widely used around the world since ancient times. The advancement of phytochemical and phytopharmacological sciences has enabled elucidation of the composition and biological activities of several medicinal plant products. The effectiveness of many species of medicinal plants depends on the supply of active compounds. Most of the biologically active constituents of extracts, such as flavonoids, tannins, and terpenoids, are highly soluble in water, but have low absorption, because they are unable to cross the lipid membranes of the cells, have excessively high molecular size, or are poorly absorbed, resulting in loss of bioavailability and efficacy. Some extracts are not used clinically because of these obstacles. It has been widely proposed to combine herbal medicine with nanotechnology, because nano-structured systems might be able to potentiate the action of plant extracts, reducing the required dose and side effects, and improving activity. Nanosystems can deliver the active constituent at a sufficient concentration during the entire treatment period, directing it to the desired site of action. Conventional treatments do not meet these requirements. The purpose of this study is to review nanotechnology- based drug delivery systems and herbal medicines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alzheimer's disease is a neurological disorder that results in cognitive and behavioral impairment. Conventional treatment strategies, such as acetylcholinesterase inhibitor drugs, often fail due to their poor solubility, lower bioavailability, and ineffective ability to cross the blood-brain barrier. Nanotechnological treatment methods, which involve the design, characterization, production, and application of nanoscale drug delivery systems, have been employed to optimize therapeutics. These nanotechnologies include polymeric nanoparticles, solid lipid nanoparticles, nanostructured lipid carriers, microemulsion, nanoemulsion, and liquid crystals. Each of these are promising tools for the delivery of therapeutic devices to the brain via various routes of administration, particularly the intranasal route. The objective of this study is to present a systematic review of nanotechnology-based drug delivery systems for the treatment of Alzheimer's disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dendrimers of poly (amidoamine) (PAMAM) are nanoparticles which have proven succeed in transporting drugs due to high solubility, low toxicity and ability to control drugs release. Studies have explored the biological potential of dendrimers such as to transport genes, development of vaccines, antiviral, antibacterial and anticancer therapies. This review of literature on the PAMAM dendrimers discusses the architecture and general construction of dendrimers and intrinsic properties of the PAMAM. This study also describes how the PAMAM interact with many drugs and the potential of these macromolecules as well as drug nanocarriers in transdermal routes of administration, ocular, respiratory, oral and intravenous administration. Dendrimers promises good future prospects for the biomedicine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite the efficacy of topical retinoic acid, skin reactions have limited its acceptance by patients. Other retinoids, like Retinyl Palmitate (RP), are considerably less irritating, but they are also less effective. In order to enhance the performance of retinoids, in this work RP has been added to cosmetic formulations such as nanoemulsions, which can provide better penetration of this active substance. Because the vehicle can directly influence the skin penetration and the effectiveness of RP, two skin care products containing 5000 UI RP have been developed and investigated, namely a nanoemulsifying system and a classic gel cream. In vitro penetration tests were conducted by using Franz diffusion cells and placing porcine ear skin and iso-propanol in the receptor compartment. The RP concentration in the skin layers was analyzed by high performance liquid chromatography, and a Zeta-Sizer system was employed for measurement of the the particle size distribution. The penetration tests revealed a large difference between the vehicles in terms of the RP concentrations in each skin layer. The classic gel cream furnished better RP penetration in both the stratum corneum and the epidermis without stratum corneum + dermis, as compared to the self-nanoemulsifying system. The two vehicles displayed the same particle size (between 100 and 200 nm). Better understanding of RP skin delivery using different vehicles has been acquired, and the importance of evaluating the efficacy of nanocosmetics. Results from the present study should also contribute to the assessment of commercial self-nanoemulsifying systems with potential application in the facile production of nanoemulsions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanotechnology entails the manufacturing and manipulation of matter at length scales ranging from single atoms to micron-sized objects. The ability to address properties on the biologically-relevant nanometer scale has made nanotechnology attractive for Nanomedicine. This is perceived as a great opportunity in healthcare especially in diagnostics, therapeutics and more in general to develop personalized medicine. Nanomedicine has the potential to enable early detection and prevention, and to improve diagnosis, mass screening, treatment and follow-up of many diseases. From the biological standpoint, nanomaterials match the typical size of naturally occurring functional units or components of living organisms and, for this reason, enable more effective interaction with biological systems. Nanomaterials have the potential to influence the functionality and cell fate in the regeneration of organs and tissues. To this aim, nanotechnology provides an arsenal of techniques for intervening, fabricate, and modulate the environment where cells live and function. Unconventional micro- and nano-fabrication techniques allow patterning biomolecules and biocompatible materials down to the level of a few nanometer feature size. Patterning is not simply a deterministic placement of a material; in a more extended acception it allows a controlled fabrication of structures and gradients of different nature. Gradients are emerging as one of the key factors guiding cell adhesion, proliferation, migration and even differentiation in the case of stem cells. The main goal of this thesis has been to devise a nanotechnology-based strategy and tools to spatially and temporally control biologically-relevant phenomena in-vitro which are important in some fields of medical research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Startups’ contributions on economic growth have been widely realized. However, the funding gap is often a problem limiting startups’ development. To some extent, VC can be a means to solve this problem. VC is one of the optimal financial intermediaries for startups. Two streams of VC studies are focused in this dissertation: the criteria used by venture capitalists to evaluate startups and the effect of VC on innovation. First, although many criteria have been analyzed, the empirical assessment of the effect of startup reputation on VC funding has not been investigated. However, reputation is usually positively related with firm performance, which may affect VC funding. By analyzing reputation from the generalized visibility dimension and the generalized favorability dimension using a sample of 200 startups founded from 1995 operating in the UK MNT sector, we show that both the two dimensions of reputation have positive influence on the likelihood of receiving VC funding. We also find that management team heterogeneity positively influence the likelihood of receiving VC funding. Second, studies investigating the effect of venture capital on innovation have frequently resorted to patent data. However, innovation is a process leading from invention to successful commercialization, and while patents capture the upstream side of innovative performance, they poorly describe its downstream one. By reflecting the introduction of new products or services trademarks can complete the picture, but empirical studies on trademarking in startups are rare. Analyzing a sample of 192 startups founded from 1996 operating in the UK MNT sector, we find that VC funding has positive effect on the propensity to register trademarks, as well as on the number and breadth of trademarks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Creation of biocompatible functional materials is an important task in supramolecular chemistry. In this contribution, we report on noncovalent synthesis of DNA-grafted supramolecular polymers (SPs). DNA-grafted SPs enable programmed arrangement of oligonucleotides in a regular, tightly packed one-dimensional array. Further interactions of DNA-grafted SPs with complementary DNA strands leads to the formation of networks through highly cooperative G-C blunt-end stacking interactions. The structural changes in the polymeric core enable to monitor spectroscopically the stepwise formation of networks. Such stimuli-responsive supramolecular networks may lead to the development of DNA-based smart materials.